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Preface 

This book is about prediction algorithms that learn. The predictions these 
algorithms make are often imperfect, but they improve over time, and they 
are hedged: they incorporate a valid indication of their own accuracy and reli- 
ability. In most of the book we make the standard assumption of randomness: 
the examples the algorithm sees are drawn from some probability distribu- 
tion, independently of one another. The main novelty of the book is that 
our algorithms learn and predict simultaneously, continually improving their 
performance as they make each new prediction and find out how accurate 
it is. It might seem surprising that this should be novel, but most existing 
algorithms for hedged prediction first learn from a training data set and then 
predict without ever learning again. The few algorithms that do learn and 
predict simultaneously do not produce hedged predictions. In later chapters 
we relax the assumption of randomness to the assumption that the data come 
from an on-line compression model. We have written the book for researchers 
in and users of the theory of prediction under randomness, but it may also 
be useful to those in other disciplines who are interested in prediction under 
uncertainty. 

This book has its roots in a series of discussions at Royal Holloway, Univer- 
sity of London, in the summer of 1996, involving AG, Vladimir N. Vapnik and 
VV. Vapnik, who was then based at AT&T Laboratories in New Jersey, was 
visiting the Department of Computer Science at Royal Holloway for a couple 
of months as a part-time professor. VV had just joined the department, after 
a year at the Center for Advanced Study in Behavioral Sciences at Stanford. 
AG had become the head of department in 1995 and invited both Vapnik and 
VV to join the department as part of his program (enthusiastically supported 
by Norman Gowar, the college principal) of creating a machine learning cen- 
ter at Royal Holloway. The discussions were mainly concerned with Vapnik's 
work on support vector machines, and it was then that it was realized that 
the number of support vectors used by such a machine could serve as a basis 
for hedged prediction. 
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Our subsequent work on this idea involved several doctoral students at
Royal Holloway. Ilia Nouretdinov has made several valuable theoretical con-
tributions. Our other students working on this topic included Craig Saunders,
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Introduction 

In this introductory chapter, we sketch the existing work in machine learning 
on which we build and then outline the contents of the book. 

1.1 Machine learning 

The rapid development of computer technology during the last several decades 
has made it possible to solve ever more difficult problems in a wide variety of 
fields. The development of software has been essential to this progress. The 
painstaking programming in machine code or assembly language that was once 
required to solve even simple problems has been replaced by programming in 
high-level object-oriented languages. We are concerned with the next natural 
step is this progression - the development of programs that can learn, i.e., 
automatically improve their performance with experience. 

The need for programs that can learn was already recognized by Alan 
Turing (1950), who argued that it may be too ambitious to write from scratch 
programs for tasks that even humans must learn to perform. Consider, for 
example, the problem of recognizing hand-written digits. We are not born 
able to perform this task, but we learn to do it quite robustly. Even when 
the hand-written digit is represented as a gray-scale matrix, as in Fig. 1.1, 
we can recognize it easily, and our ability to do so scarcely diminishes when 
it is slightly rotated or otherwise perturbed. We do not know how to write 
instructions for a computer that will produce equally robust performance. 

The essential difference between a program that implements instructions 
for a particular task and a program that learns is adaptability. A single learn- 

Fig. 1.1. A hand-written digit 
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ing program may be able to learn a wide variety of tasks: recognizing hand- 
written digits and faces, diagnosing patients in a hospital, estimating house 
prices, etc. 

Recognition, diagnosis, and estimation can all be thought of as special 
cases of prediction. A person or a computer is given certain information and 
asked to predict the answer to a question. A broad discussion of learning would 
go beyond prediction to consider the problems faced by a robot, who needs 
to act as well as predict. The literature on machine learning, has emphasized 
prediction, however, and the research reported in this book is in that tradition. 
We are interested in algorithms that learn to predict well. 

Learning under randomness 

One learns from experience. This is as true for a computer as it is for a 
human being. In order for there to be something to learn there must be some 
stability in the environment; it must be governed by constant, or evolving 
only slowly, laws. And when we learn to predict well, we may claim to have 
learned something about that environment. 

The traditional way of making the idea of a stable environment precise is 
to assume that it generates a sequence of examples randomly from some fixed 
probability distribution, say Q, on a fixed space of possible examples, say Z. 
These mathematical objects, Z and Q, describe the environment. 

The environment can be very complex; Z can be large and structured in a 
complex way. This is illustrated by the USPS data set from which Fig. 1.1 is 
drawn (see Appendix B). Here an example is any 16 x 16 image with 31 shades 
of gray, together with the digit the image represents (an integer between 0 to 
9). So there are 3 1 ' ~ ~ ' ~  x 10 (this is approximately possible examples 
in the space Z. 

In most of this book, we assume that each example consists of an object 
and its label. In the USPS dataset, for example, an object is a gray-scale 
matrix like the one in Fig. 1.1, and its label is the integer between 0 and 9 
represented by the gray-scale matrix. 

In the problem of recognizing hand-written digits and other typical 
machine-learning problems, it is the space of objects, the space of possible 
gray-scale images, that is large. The space of labels is either a small finite 
set (in what is called classification problems) or the set of real numbers 
(regression problems). 

When we say that the examples are chosen randomly from Q, we mean 
that they are independent in the sense of probability theory and all have the 
distribution Q. They are independent and identically distributed. We call this 
the randomness assumption. 

Of course, not all work in machine learning is concerned with learning 
under randomness. In learning with expert advice, for example, randomness 
is replaced by a game-theoretic set-up (Vovk 2001a); here a typical result is 
that the learner can predict almost as well as the best strategy in a pool of 
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possible strategies. In reinforcement learning, which is concerned with ratio- 
nal decision-making in a dynamic environment (Sutton and Barto 1998), the 
standard assumption is Markovian. In this book, we will consider extensions 
of learning under randomness in Chaps. 7-9. 

Learning under unconstrained randomness 

Sometimes we make the randomness assumption without assuming anything 
more about the environment: we know the space of examples Z, we know that 
examples are drawn independently from the same distribution, and this is all 
we know. We know nothing at the outset about the probability distribution Q 
from which each example is drawn. In this case, we say we are learning under 
unconstrained randomness. Most of the work in this book, like much other 
work in machine learning, is concerned with learning under unconstrained 
randomness. 

The strength of modern machine-learning methods often lies in their abil- 
ity to make hedged predictions under unconstrained randomness in a high- 
dimensional environment, where examples have a very large (or infinite) num- 
ber of components. We already mentioned the USPS data set, where each 
example consists of 257 components (16 x 16 pixels and the label). In machine 
learning, this number is now considered small, and the problem of learning 
from the USPS dataset is sometimes regarded as a toy problem. 

1.2 A shortcoming of the existing theory 

Machine learning has made significant strides in its study of learning under 
unconstrained randomness. We now have a wide range of algorithms that often 
work very well in practice: decision trees, neural networks, nearest neighbors 
algorithms, and naive Bayes methods have been used for decades; newer al- 
gorithms include support vector machines and boosting, an algorithm that is 
used to improve the quality of other algorithms. 

Erom a theoretical point of view, machine learning's most significant con- 
tributions to learning under unconstrained randomness are comprised by sta- 
tistical learning theory. This theory, which began with the discovery of VC 
dimension by Vapnik and Chervonenkis in the late 1960s and was partially 
rediscovered independently by Valiant (1984), has produced both deep math- 
ematical results and learning algorithms that work very well in practice (see 
Vapnik 1998 for a recent review). 

Given a "training" set of examples, statistical learning theory produces 
what we call a prediction rule - a function mapping the objects into the labels. 
Formally, the value taken by a prediction rule on a new object is a simple 
prediction - a guess that is not accompanied by any statement concerning 
how accurate it is likely to be. The theory does guarantee, however, that as 
the training set becomes bigger and bigger these predictions will become more 
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Fig. 1.2. In the problem of digit recognition, we would like to  attach lower confi- 
dence to  the prediction for the image in the middle than to the predictions for the 
images on the left and the right 

and more accurate with greater and greater probability: they are probably 
approximately correct. 

How probably and how approximately? This question has not been an- 
swered as well as we might like. This is because the theoretical results that 
might be thought to answer it, the bounds that demonstrate arbitrarily good 
accuracy with sufficiently large sizes of the training set, are usually too loose 
to tell us anything interesting for training sets that we actually have. This hap- 
pens in spite of the empirical fact that the predictions often perform very well 
in practice. Consider, for example, the problem of recognizing hand-written 
digits, which we have already discussed. Here we are interested in giving an 
upper bound on the probability that our learning algorithm fails to choose the 
right digit; we might like this probability to be less than 0.05, for example, so 
that we can be 95% confident that the prediction is correct. Unfortunately, 
typical upper bounds on the probability of error provided by the theory, even 
for relatively clean data sets such as the USPS data set we have discussed, 
are greater than 1; bounds less than 1 can usually be achieved only for very 
straightforward problems or with very large data sets. This is true even for 
newer results in which the bound on the accuracy depends on the training 
set (as in, e.g., Littlestone and Warmuth 1986, Floyd and Warmuth 1995; cf. 
$10.1). 

The hold-out estimate of confidence 

Fortunately, there are less theoretical and more effective ways of estimating 
the confidence we should have in predictions output by machine-learning al- 
gorithms, including those output by the algorithms proposed by statistical 
learning theory. One of the most effective is the oldest and most naive: the 
"hold-out" estimate. In order to compute this estimate, we split the available 
examples into two parts, a training set and a "test" set. We apply the algo- 
rithm to the training set in order to find a prediction rule, and then we apply 
this prediction rule to the test set. The observed rate of errors on the test set 
tells us how confident we should be in the prediction rule when we apply it to 
new examples (for details, see $10.1). 
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The contribution of this book 

When we use a hold-out sample to obtain a meaningful bound on the proba- 
bility of error, or when we use an error bound from statistical learning theory, 
we are hedging the prediction - we are adding to it a statement about how 
strongly we believe it. In this book, we develop a different way of producing 
hedged predictions. Aside from the elegance of our new methods, at least in 
comparison with the procedure that relies on a hold-out sample, the methods 
we develop have several important advantages. 

As already mentioned in the preface, we do not have the rigid separation 
between learning and prediction, which is the feature of the traditional ap- 
proaches that makes hedged prediction feasible. In our basic learning protocol 
learning and prediction are blended, yet our predictions are hedged. 

Second, the hedged predictions produced by our new algorithms are much 
more confident and accurate. We have, of course, a different notion of a hedged 
prediction, so the comparison can be only informal; but the difference is so 
big that there is little doubt that the improvement is real from the practical 
point of view. 

A third advantage of our methods is that the confidence with which the 
label of a new object is predicted is always tailored not only to the previously 
seen examples but also to that object. 

1.3 The on-line transductive framework 

The new methods presented in this book are quite general; they can be tried 
out, at least, in almost any problem of learning under randomness. The frame- 
work in which we introduce and study these methods is somewhat unusual, 
however. Most previous theoretical work in machine learning has been in an 
inductive and off-line framework: one uses a batch of old examples to pro- 
duce a prediction rule, which is then applied to new examples. We begin 
instead with a framework that is transductive, in the sense advocated by Vap- 
nik (1995, 1998), and on-line: one makes predictions sequentially, basing each 
new prediction on all the previous examples instead of repeatedly using a rule 
constructed from a fixed batch of examples. 

On-line learning 

Our framework is on-line because we assume that the examples are presented 
one by one. Each time, we observe the object and predict the label. Then 
we observe the label and go on to the next example. We start by observing 
the first object x l  and predicting its label yl. Then we observe yl and the 
second object 2 2 ,  and predict its label yz. And so on. At the nth step, we have 
observed the previous examples 
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general rule L = J  
v" inductzon \ €  . deductzon 

training set transduction prediction 

Fig. 1.3. Inductive and transductive prediction 

and the new object x,, and our task is to predict y,. The quality of our 
predictions should improve as we accumulate more and more old examples. 
This is the sense in which we are learning. 

Transduction 

Vapnik's distinction between induction and transduction, as applied to the 
problem of prediction, is depicted in Fig. 1.3. In inductive prediction we first 
move from examples in hand to some more or less general rule, which we might 
call a prediction or decision rule, a model, or a theory; this is the inductive 
step. When presented with a new object, we derive a prediction from the 
general rule; this is the deductive step. In transductive prediction, we take a 
shortcut, moving from the old examples directly to the prediction about the 
new object. 

Typical examples of the inductive step are estimating parameters in statis- 
tics and finding a "concept" (to use Valiant's 1984 terminology) in statistical 
learning theory. Examples of transductive prediction are estimation of future 
observations in statistics (see, e.g., Cox and Hinkley 1974, 57.5) and nearest 
neighbors algorithms in machine learning. 

In the case of simple predictions the distinction between induction and 
transduction is less than crisp. A method for doing transduction, in our on- 
line setting, is a method for predicting yn from XI ,  yl, . . . , x,-I, y,-1, x,. Such 
a method gives a prediction for any object that might be presented as x,, 
and so it defines, at least implicitly, a rule, which might be extracted from 
XI, y1,. . . , ~ ~ - 1 ,  yn-1 (induction), stored, and then subsequently applied to 
x, to predict y, (deduction). So any real distinction is really at a practical 
and computational level: do we extract and store the general rule or not? 

For hedged predictions the difference between transduction and induction 
goes deeper. We will typically want different notions of hedged prediction in 
the two frameworks. Mathematical results about induction typically involve 
two parameters, often denoted E (the desired accuracy of the prediction rule) 
and S (the probability of achieving the accuracy of E ) ,  whereas results about 
transduction involve only one parameter, which we will denote 6 (in this book, 
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the probability of error we are willing to tolerate); see Fig. 1.3. A detailed dis- 
cussion can be found in Chap. 10, which also contains a historical perspective 
on the three main approaches to hedged prediction (inductive, Bayesian, and 
transductive). 

On-line/off-line and transduction/induction compromises 

When we work on-line, we would want to use a general rule extracted from 
XI ,  y1,. . . , xn-l, y,-1 only once, to predict y, from x,. After observing x, 
and then y,, we have a larger dataset, XI ,  yl, . . . , x,, y,, and we can use it 
to extract a new, possibly improved, general rule before trying to predict 
y,+l from x,+l. So from a purely conceptual point of view, induction seems 
silly in the on-line framework; it is more natural to say that we are doing 
transduction, even in cases where the general rule is easy to extract. As a 
practical matter, however, the computational cost of a transductive method 
may be high, and in this case, it may be sensible to compromise with the off- 
line or inductive approach. After accumulating a certain number of examples, 
we might extract a general rule and use it for a while, only updating it as 
frequently as is practical. 

The methods we present in this book are most naturally described and 
are most amenable to mathematical analysis in the on-line framework. So we 
work out our basic theory in that framework, and this theory can be consid- 
ered transductive. The theory extends, however, to the transductive/inductive 
compromise just described, where a general rule is extracted and used for a 
period of time before it is updated (see $4.1). 

The theory also extends to relaxations of the on-line protocol that make 
it close to the off-line setting, and this is important, because most practical 
problems have at  least some off-line aspects. If we are concerned with recog- 
nizing hand-written zip codes, for example, we cannot always rely on a human 
teacher to tell us the correct interpretation of each hand-written zip code; why 
not use such an ideal teacher directly for prediction? The relaxation of the 
on-line protocol considered in $4.3 includes "slow teachers", who provide the 
feedback with a delay, and "lazy teachers", who provide feedback only oc- 
casionally. In the example of zip codes recognition, this relaxation allows us 
to replace constant supervision by using returned letters for teaching or by 
occasional lessons. 

1.4 Conformal prediction 

Most of this book is devoted to a particular method that we call "conformal 
prediction". When we use this method, we predict that a new object will 
have a label that makes it similar to the old examples in some specified way, 
and we use the degree to which the specified type of similarity holds within 
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Fig. 1.4. An example of a nested family of prediction sets (casual prediction in 
black, confident prediction in dark gray, and highly confident prediction in light 
gray) 

the old examples to estimate our confidence in the prediction. Our conformal 
predictors are, in other words, "confidence predictors". 

We need not explain here exactly how conformal prediction works. This is 
the topic of the next chapter. But we will explain informally what a confidence 
predictor aims to do and what it means for it to be valid and efficient. 

Nested prediction sets 

Suppose we want to pinpoint a target that lies somewhere within a rectangular 
field. This could be an on-line prediction problem; for each example, we predict 
the coordinates y, E [al,  a2] x [bl, bz] of the target from a set of measurements 
X n .  

We can hardly hope to predict the coordinates yn exactly. But we can hope 
to have a method that gives a subset T, of [al, a2] x [bl, b2] where we can be 
confident y, lies. Intuitively, the size of the prediction se t  r, should depend on 
how great a probability of error we want to allow, and in order to get a clear 
picture, we should specify several such probabilities. We might, for example, 
specify the probabilities 1%, 5%, and 20%, corresponding to confidence levels 
99%, 95%, and 80%. When the probability of the prediction set failing to 
include y, is only 1%, we declare 99% confidence in the set (highly confident 
prediction). When it is 5%, we declare 95% confidence (confident prediction). 
When it is 20%, we declare 80% confidence (casual prediction). We might 
also want a 100% confidence set, but in practice this might be the whole field 
assumed a t  the outset to contain the target. 

Figure 1.4 shows how such a family of prediction sets might look. The 
casual prediction pinpoints the target quite well, but we know that this kind 
of prediction can be wrong 20% of the time. The confident prediction is much 
bigger. If we want to be highly confident (make a mistake only for each 100th 
example, on average), we must accept an even lower accuracy; there is even a 
completely different location that we cannot rule out a t  this level of confidence. 
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In principle, a confidence predictor outputs prediction sets for all confidence 
levels, and these sets are nested, as in Fig. 1.4. 

There are two important desiderata for a confidence predictor: 

0 They should be valid, in the sense that in the long run the frequency1 of 
error does not exceed E at  each chosen confidence level 1 - E. 

They should be eficient, in the sense that the prediction sets they output 
are as small as possible. 

We would also like the predictor to be as conditional as possible - we want it 
to take full account of how difficult the particular example is. 

Validity 

Our conformal predictors are always valid. Fig. 1.5 shows the empirical confir- 
mation of the validity for one particular conformal predictor that we study in 
Chap. 3. The solid, dash-dot and dotted lines show the cumulative number of 
errors for the confidence levels 99%, 95%, and 80%, respectively. As expected, 
the number of errors made grows linearly, and the slope is approximately 20% 
for the confidence level 80%, 5% for the confidence level 95%, and 1% for the 
confidence level 99%. 

As we will see in Chap. 2, a precise discussion of the validity of conformal 
predictors actually requires that we distinguish two kinds of validity: conser- 
vative and exact. In general, a conformal predictor is conservatively valid: the 
probability it makes an error when it outputs a 1 - t- set (i.e., a prediction set 
at  a confidence level 1 - E) is no greater than E, and there is little dependence 
between errors it makes when predicting successive examples (at successive 
trials, as we will say). This implies, by the law of large numbers, that the long- 
run frequency of errors at  confidence level 1 - E is about E or less. In practice, 
the conservativeness is often not very great, especially when n is large, and so 
we get empirical results like those in Fig. 1.5, where the long-run frequency of 
errors is very close to E. From a theoretical point of view, however, we must 
introduce a small element of deliberate randomization into the prediction pro- 
cess in order to get exact validity, where the probability of a 1 - t- set being 
in error is exactly E, errors are made independently at different trials, and the 
long-run frequency of errors converges to t-. 

Efficiency 

Machine learning has been mainly concerned with two types of problems: 

0 Classification, where the label space Y is a small finite set (often binary). 
0 Regression, where the label space is the real line. 

*By "frequency" we usually mean "relative frequency" 
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Fig. 1.5. On-line performance of a conformal predictor ("the 1-nearest neighbor 
conformal predictor", described in Chap. 3) on the USPS data set (9298 hand- 
written digits, randomly permuted) for the confidence levels 80%, 95%, and 99%. 
The figures in this book are not too much affected by statistical variation (due to 
the random choice of the permutation of the data set) 
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Conditionality 

The goal of conditionality can be explained with a simple example discussed by 
David Cox (1958b). Suppose there are two categories of objects, "easy" (easy 
to predict) and "hard" (hard to predict). We can tell which objects belong 
to which category, and the two categories occur with equal probability; about 
50% of the objects we encounter are easy, and 50% hard. We have a prediction 
method that applies to all objects, hard and easy, and has error rate 5%. We 
do not know what the error rate is for hard objects, but perhaps it is 8%, and 
we get an overall error rate of 5% only because the rate for easy objects is 
2%. In this situation, we may feel uncomfortable, when we encounter a hard 
object, about appealing to the average error rate of 5% and saying that we 
are 95% confident of our prediction. 

Whenever there are features of objects that we know make the prediction 
easier or harder, we would like to take these features into account - to con- 
dition on them. This is done by conformal predictors almost automatically: 
they are designed for specific applications so that their predictions take fullest 
possible account of the individual object to be predicted. What is not achieved 
automatically is the validity separately for hard and easy objects. It is pos- 
sible, for example, that if a figure such as Fig. 1.5 were constructed for easy 
objects only, or for hard objects only, the slopes of the cumulative error lines 
would be different. We would get the correct slope if we average the slope 
for easy objects and the slope for hard objects, but we would ideally like to 
have the "conditional validity": validity for both categories of objects. As we 
show in $4.5, this can be achieved by modifying the definition of conformal 
predictors. In fact, the conditional validity is handled by a general theory that 
also applies when we segregate examples not by their difficulty but by their 
time of arrival, as when we are using an inductive rule that we update only 
at specified intervals. 

Flexibility of conformal predictors 

A useful feature of our method is that a conformal predictor can be built on 
top of almost any machine-learning algorithm. The latter, which we call the 
underlying algorithm, may produce hedged predictions, simple predictions, or 
simple predictions complemented by ad hoc measures of confidence; our expe- 
rience is that it is always possible to transform it into a conformal predictor 
that inherits its predictive performance but is, of course, valid, just like any 
other conformal predictor. In this book we explain how to build conformal 
predictors using such methods as nearest neighbors, support vector machines, 
bootstrap, boosting, neural networks, decision trees, ridge regression, logistic 
regression, and any Bayesian algorithm (see ss2.3, 3.1, 4.2). 
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1.5 Probabilistic predict ion under unconstrained 
randomness 

There are many ways to do classification and regression under unconstrained 
randomness and for high-dimensional examples. Conformal predictors, for ex- 
ample, combine good theoretical properties with high accuracy in practical 
problems. It is true that the environment has to be benign, in some sense, for 
any learning method to be successful, but there are no obvious insurmountable 
barriers for classification and regression. The situation changes if we move to 
the harder problem of probabilistic prediction: that of guessing the probability 
distribution for the new object's label. Features of data that can reasonably 
be expected in typical machine-learning applications become such barriers. 

For simplicity, we will assume in this section that the label is binary, 0 or 
1. In this case the probabilistic prediction for the label of the new object boils 
down to one number, the predicted probability that the label is 1. 

The problem of probabilistic prediction is discussed in Chaps. 5 ,  6, and 9 .  
Probabilistic prediction is impossible in an important sense, but there are also 
senses in which it is possible. So this book gives more than one answer to the 
question "Is probabilistic prediction possible?" We start with a "yes" answer. 

Universally consistent probabilistic predictor 

Stone (1977) showed that a nearest neighbors probabilistic predictor (whose 
probabilistic prediction is the fraction of objects classified as 1 among the k 
nearest neighbors of the new object, with a suitably chosen k )  is universally 
consistent, in the sense that the difference between the probabilistic prediction 
and the true conditional probability given the object that the label is 1 con- 
verges to zero in probability. The only essential assumption is randomness2; 
there are no restrictive regularity conditions. 

Stone's actual result was more general, and it has been further extended in 
different directions. One of these extension is used in Chap. 3 for constructing 
a universal randomized conformal predictor. 

Probabilistic prediction using a finite data set 

The main obstacle in applying Stone's theorem is that the convergence it 
asserts is not uniform. The situation that we typically encounter in practice 
is that we are given a set of examples and a new object and we would like 
to estimate the probability that the label of the new object is 1. It is well 
understood that in this situation the applicability of Stone's theorem is very 

2 ~ h e  other assumption made by Stone was that the objects were coming from 
a Euclidean space; since "Euclidean" is equivalent to "Borel" in the context of 
existence of a universally consistent probabilistic predictor, this assumption is very 
weak. 
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limited (see, e.g., Devroye et al. 1996, s7.1). In Chap. 5 we give a new, more 
direct, formalization of this observation. 

We say that a data set consisting of old examples and one new object is 
diverse if no object in it is repeated (in particular, the new object is different 
from all old objects). The main result of 85.2 asserts that any nontrivial (not 
empty and not containing 0 and 1) prediction interval for the conditional 
probability given the new object that the new label is 1 is inadmissible if the 
data set is diverse and randomness is the only assumption. 

The assumption that the data set is diverse is related to the assumption 
of a high-dimensional environment. If the objects are, for example, complex 
images, we will not expect precise repetitions among them. 

Venn prediction 

The results of Chap. 5 show that it is impossible to estimate the true condi- 
tional probabilities under the conditions stated; that chapter also contains a 
result that it is impossible to find conditional probabilities that are as good (in 
the sense of the algorithmic theory of randomness) as the true probabilities. 
If, however, we are prepared to settle for less and only want probabilities that 
are "well calibrated" (in other words, have a frequentist justification), a modi- 
fication of conformal predictors which we call Venn predictors will achieve this 
goal, in a very strong non-asymptotic sense. This is the subject of Chap. 6, 
which is one of the longest in this book, The main problem that we have to 
deal with in this chapter is that one cannot guarantee that miscalibration 
will not happen: everything can happen (perhaps with a small probability) 
for finite sequences and typical probability distributions. But in the case of 
Venn predictors, any evidence against calibration translates into evidence, at 
least as strong, against the assumption of randomness; therefore, we expect 
Venn predictors to be well calibrated as long as we accept the hypothesis of 
randomness. A significant part of the chapter is devoted to the ways of testing 
calibration and randomness. 

1.6 Beyond randomness 

In this book we also consider testing the assumption of randomness and al- 
ternatives to this assumption. The most radical alternative is introduced in 
Chaps. 8 and 9 under the name of "on-line compression modeling". 

Testing randomness 

This is the topic of Chap. 7. We start it by adapting the mathematical 
apparatus developed in the previous chapters to testing the assumption 
of randomness. The usual statistical approach to testing (sometimes called 
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the "Neyman-Pearson-Wald" theory) is essentially off-line: in the original 
Neyman-Pearson approach (see, e.g., Lehmann 1986), the sample size is cho- 
sen a przori, and in Wald's (1947) sequential analysis, the sample size is data- 
dependent but still at some point a categorical decision on whether the null 
hypothesis is rejected or not is taken (with probability one). The approach 
of $7.1 is on-line: we constantly update the strength of evidence against the 
null hypothesis of randomness. Finding evidence against the null hypothesis 
involves gambling against it, and the strength of evidence equals the gam- 
bler's current capital. For further details and the history of this approach to 
testing, see Shafer and Vovk 2001. The main mathematical finding of $7.1 is 
that there exists a wide family of "exchangeability martingales", which can 
be successfully applied to detecting lack of randomness. 

Low-dimensional dynamic models 

The ability to test the assumption of randomness immediately provides op- 
portunities for extending the range of stochastic environments to which one 
can apply the idea of conformal prediction. In 87.2 we consider the simple 
case where we are given a parametric family of transformations one of which 
is believed to transform the observed data sequence into a random sequence. 
If the parameter is a vector in a low-dimensional linear space, we can often 
hope to be able to detect lack of randomness of the transformed data sequence 
for most values of the parameter as the number of observed examples grows. 
When the range of possible values of the parameter becomes very narrow, 
conformal prediction can be used. 

Islands of randomness 

When we are willing to make the assumption of randomness, or some version 
of this assumption as described in the previous subsection, about a data se- 
quence, it usually means that this data sequence was obtained from a much 
bigger sequence by careful filtering. When observing the real world around us, 
we cannot hope that a simple model such as randomness will explain much, 
but the situation changes if we, e.g., discard all observations except the results 
of fair coin tosses. 

In $7.3, we briefly discuss the case where randomness can appear as a 
property of only relatively small subsequences of the full data sequence. Such 
a "big picture" is of great interest to philosophers (see, e.g., Venn 1866). Once 
we know that some subsequence is random (this knowledge can be based on an 
initial guess and then using as severe tests as we can think of to try and falsify 
this guess; $7.1 provides the means for the second stage), we can apply the 
theory developed under the assumption of randomness to make predictions. 
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On-line compression models 

As we will see in Chap. 8, the idea of conformal prediction generalizes from 
learning under randomness, where examples are independent and identi- 
cally distributed, to "on-line compression models". In an on-line compression 
model, it is assumed that the data can be summarized in way that can be 
updated as new examples come in, and the only probabilities given are back- 
ward probabilities - probabilities for how the updated summary might have 
been obtained. 

On-line compression models derive from the work of Andrei Kolmogorov. 
They open a new direction for broadening the applicability of machine- 
learning methods, giving a new meaning to the familiar idea that learning 
can be understood as information compression. 

In Chap. 8 we consider in detail three important on-line compression mod- 
els (Gaussian, Markov, exchangeability) and their variants. In Chap. 9 we ex- 
tend the idea of Venn prediction to on-line compression modeling and apply 
it to a new model, which we call the "hypergraphical model". 

1.7 Bibliographical remarks 

Each chapter of this book ends with a section entitled "Bibliographical remarks", or 
similarly. These sections are set in a small font and may use mathematical notions 
and results not introduced elsewhere in the book. 

Turing suggested the idea of machine learning in his paper published in Mind 
as an approach to  solving his famous "imitation game" (Turing 1950, $1). 

A recent empirical study of various bounds on prediction accuracy is reported 
in Langford 2004. It found the hold-out estimate to be a top performer. 

Mitchell (1997, $8.6) discusses advantages and disadvantages of inductive and 
transductive approaches to  making simple predictions. The near-synonyms for 
"transductive learning" used in that book are "lazy learning" and "instance-based 
learning". 



Conformal prediction 

In this chapter we formally introduce conformal predictors. After giving the 
necessary definitions, we will prove that when a conformal predictor is used 
in the on-line mode, its output is valid, not only in the asymptotic sense that 
the sets it predicts for any fixed confidence level 1 - E will be wrong with 
frequency at most E (approaching E in the case of smoothed conformal pre- 
dictors) in the long run, but also in a much more precise sense: the error 
probability of a smoothed conformal predictor is E at  every trial and errors 
happen independently at  different trials. In 52.4 we will see that conformal 
prediction is indispensable for achieving this kind of validity. The basic proce- 
dure of conformal prediction might look computationally inefficient when the 
label set is large, but in 52.3 we show that in the case of, e.g., least squares 
regression (where the label space JR is uncountable) there are ways of making 
conformal predictors much more efficient. 

2.1 Confidence predictors 

The conformal predictors we define in this chapter are confidence predictors 
- they make a range of successively more specific predictions with succes- 
sively less confidence. In this section we define precisely what we mean by a 
confidence predictor and its validity. 

Assumptions 

We assume that Reality outputs successive pairs 

called examples. Each example (xi, yi) consists of an object xi and its label 
yi. The objects are elements of a measurable space X called the object space 
and the labels are elements of a measurable space Y called the label space. 
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We assume that X is non-empty and that Y contains at  least two essentially 
different elements1. When we need a more compact notation, we write zi for 
(xi, yi). We set 

Z : = X x Y  

and call Z the example space. Thus the infinite data sequence (2.1) is an 
element of the measurable space Zw. 

When we say that the objects are absent, we mean that 1x1 = 1. In this 
case xi do not carry any information and do not need to be mentioned; we 
will then identify Y and Z. 

Our standard assumption is that Reality chooses the examples indepen- 
dently from some probability distribution Q on Z - i.e., that the infinite se- 
quence zl, 22,.  . . is drawn from the power probability distribution QbO in Zw. 
Most of the results of this book hold under this randomness assumption, but 
usually we need only the slightly weaker assumption that the infinite data 
sequence (2.1) is drawn from a distribution P on ZbO that is exchangeable. 
The statement that P is exchangeable means that for every positive integer 
n, every permutation 7r of (1,. . . , n), and every measurable set E C Zn, 

Every power distribution is exchangeable, and under a natural regularity con- 
dition (Z is a Bore1 space), any exchangeable distribution on Zw is a mixture 
of power distributions; for details, see 5A.5. In our mathematical results, we 
usually use the randomness assumption or the exchangeability assumption 
depending on which one leads to a stronger statement. 

Simple predictors and confidence predictors 

We assume that at the nth trial Reality first announces the object x, and 
only later announces the label y,. If we simply want to predict y,, then we 
need a function 

D : Z * x X - + Y .  (2-2) 

We call such a function a simple predictor, always assuming it is measurable. 
For any sequence of old examples, say XI, yl, . . . , xn-1, yn-1 E Z*, and any 
new object, say x, E X, it gives D(x1, yl,.  . . , x,-1, yn-1, xn) E Y as its 
prediction for the new label y,. 

As we explained in 51.4, however, we have a more complicated notion of 
prediction. Instead of merely choosing a single element of Y as our prediction 

'Formally, the a-algebra on Y is assumed to be different from (0, Y). It is con- 
venient to assume that for each pair of distinct elements of Y there is a measurable 
set containing only one of them; we will do this without loss of generality, and then 
our assumption about Y is that IYI > 1. 
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for yn, we want to give a range of more or less precise predictions, each labeled 
with a degree of confidence. We want to give subsets of Y large enough that 
we can be confident that yn will fall in them, while also giving smaller sub- 
sets in which we are less confident. An algorithm that predicts in this sense 
requires an additional input E E (0, I), which we call the significance level; 
the complementary value 1 - E is called the confidence level. Given all these 
inputs, say 

an algorithm of the type that interests us, say r, outputs a subset 

of Y. (We position E as a superscript instead of placing it with the other 
arguments.) We require this subset to shrink as E is increased: r must satisfy 

whenever €1 2 €2. Intuitively, once we observe the incomplete data sequence 

and chose the significance level E, r predicts that 

and the smaller E is the more confident the prediction is. According to condi- 
tion (2.3), we are more confident in less specific predictions. 

Formally, we call a measurable function 

(2Y is the set of all subsets of Y )  that satisfies (2.3), for all significance levels 
€1 2 €2, all positive integers n, and all incomplete data sequences (2.4), a confi- 
dence predictor (or deterministic confidence predictor). The requirement that 
r be measurable means that for each n the set of sequences E, XI, yl, . . . , xn, yn 
satisfying (2.5) is a measurable subset of (0, l)  x (X x Y)n.  

Validity 

Let us begin with an intuitive explanation of the notions of exact and con- 
servative validity. For each significance level E, we want to have confidence 
1 - E in our prediction (2.5) about yn. This means that the probability of the 
prediction being in error - the probability of the event (2.5) not happening - 
should be c. Moreover, since we are making a whole sequence of predictions, 
first for yl, then for yz, and so on, we would like these error events to be inde- 
pendent. If these conditions are met no matter what exchangeable probability 
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distribution P governs the sequence of examples, then we say that the confi- 
dence predictor r is "exactly valid", or, more briefly, "exact". This means that 
making errors with r is like getting heads when making independent tosses 
of a biased coin whose probability of heads is always E .  If the probabilities for 
errors are allowed to be even less than this, then we say that the confidence 
predictor r is "conservatively valid" or, more briefly, "conservative". 

When we make independent tosses of a biased coin whose probability of 
heads is always E, the frequency of heads will converge to E with probability 
one - this is the law of large numbers. So the frequency of errors at significance 
level E for an exactly valid confidence predictor converges to E with probability 
one. As we will see, confidence predictors sometimes have this asymptotic 
property even when they are not exactly valid. So we give the property a name 
of its own; we call a confidence predictor that has it "asymptotically exact". 
Similarly, we call a confidence predictor for which the frequency of errors is 
asymptotically no more than E (for which the upper limit of the frequency of 
errors is at most E) with probability one 'Lasymptotically conservative". 

In order to restate these definitions in a way sufficiently precise to exclude 
possible misunderstandings, we now introduce a formal notation for the errors 
r makes when it processes the data sequence 

at significance level E. Whether r makes an error on the nth trial can be 
represented by a number that is one in case of an error and zero in case of no 
error: 

and the number of errors during the first n trials is 

n 

Err;(T, w )  := err; ( r ,  w) . (2-9) 
i= 1 

It is enlightening to think about the error counts err; and Err; in the con- 
text of the protocol followed as the examples are presented and the predictions 
are made: 

Err; := 0 for all E E (0, l) ;  
F O R n = l , 2 ,  ... : 

Reality outputs xn E X; 
Predictor outputs C Y for all E E (0, l) ;  
Reality outputs yn E Y; 

1 if yn @ 
err; := for all E E (0,l); 

0 otherwise 
E r r  := E r r  e r r  for all E E (0, l)  

END FOR. 
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This is a game protocol, and we can consider strategies for both players, 
Reality and Predictor. We have assumed that Reality's strategy is randomized; 
her moves are generated from an exchangeable probability distribution P on 
ZbO. A confidence predictor r is, by definition, a measurable strategy for 
Predictor. 

If w is drawn from an exchangeable probability distribution P, the number 
err;(r, w) is the realized value of a random variable, which we may designate 
err;(r, P ) .  Formally, the confidence predictor I' is exactly valid if for each e, 

err; (T, P ) ,  err; ( r ,  P ) ,  . . . (2.10) 

is a sequence of independent Bernoulli random variables with parameter E - 
i.e., if it is a sequence of independent random variables each of which has 
probability E of being one and probability 1 - e of being zero - no matter 
what exchangeable distribution P we draw w from. Unfortunately, the notion 
of exact validity is vacuous for confidence predictors. 

Theorem 2.1. No  confidence predictor is exactly valid. 

The notion of conservative validity is more complex; now we only require 
that err;(r, P )  be dominated in distribution by a sequence of independent 
Bernoulli random variables with parameter e. Formally, the confidence pre- 
dictor r is conservatively valid if for any exchangeable probability distribution 
P on Z" there exists a probability space with two families 

of (0, 1)-valued random variables such that: 

0 for a fixed E, ti'), J:), . . . is a sequence of independent Bernoulli random 
variables with parameter e; 
for all n and e, r#) 5 Jk); 

0 the joint distribution of err;(r, P),  E E (0, I), n = 1,2,. . . , coincides with 
the joint distribution of &), E E (0, I) ,  n = 1,2,. . . . 

(It might have been natural to also require that Jkl) > J P )  whenever €1 > €2, 

but it is easy to check that the inclusion of this condition leads to an equivalent 
definition.) 

To conclude, we define asymptotic validity. The confidence predictor r is 
asymptotically exact if for any exchangeable probability distribution P on Z" 
generating examples zl , z2, . . . and any significance level e, 

Err: ( r ,  P) 
lim = E 

with probability one. It is asymptotically conservative if for any exchangeable 
probability distribution P on ZbO and any significance level E, 
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Err; ( r ,  P )  
lim sup 5 

n+m n 

with probability one. 

Proposition 2.2. A n  exact confidence predictor i s  asymptotically exact. A 
conservative confidence predictor is asymptotically conservative. 

This proposition is an immediate consequence of the law of large numbers. 

Randomized confidence predictors 

We will also be interested in randomized confidence predictors, which depend, 
additionally, on elements of an auxiliary probability space. The main advan- 
tage of randomization in this context is that, as we will see, there are many 
randomized confidence predictors that are exactly valid. Formally, we define 
a randomized confidence predictor to be a measurable function 

which, for all significance levels €1 2 €2, all positive integer n, and all incom- 
plete data sequences 

where xi  E X, ~i E [O,1]  and yi E Y for all i ,  satisfies 

We will always assume that T I , T ~ ,  . . . are random variables that are inde- 
pendent (between themselves and of anything else) and distributed uniformly 
in [0, 11; this is what one expects to get from a random number generator. 

We define err;(r, w) and Err;(r, w) as before, only now they also depend 
on the 7%. In other words, err;(r, w) is defined by (2.8) with xi now being 
extended objects x i  E X x [0, 11; Err;(r, w) is defined, as before, by (2.9). 

In general, many definitions for randomized confidence predictors are spe- 
cial cases of the corresponding definitions for deterministic confidence predic- 
tors: the latter should just be applied to the extended object space X x [O,1]  
(whose elements consist of both the object and the random number to be used 
at a given trial). 

If r is a randomized confidence predictor, P is an exchangeable distribu- 
tion on Zm, and n E N, 

and 
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Err i ( r ,  (~1,717 YI,  ~ 2 , 7 2 , ~ 2 , . .  .)) 
where (XI, yl), (x2, y2), . . . are drawn from P and r l , r 2 , .  . . are drawn inde- 
pendently from Urn, the uniform distribution on [O, 1Io0, are random variables, 
which will be denoted err;(r, P) and Errk(r, P), respectively. We say that 
r is exactly valid if for each E E (0, I), (2.10) is a sequence of independent 
Bernoulli random variables with parameter 6. 

We are not really interested in the notion of conservative validity for ran- 
domized confidence predictors. 

2.2 Conformal predictors 

We start by defining the concept of a nonconformity measure. Intuitively, this 
is a way of measuring how different a new example is from old examples. There 
are many different nonconformity measures, and each one defines a conformal 
predictor and a smoothed conformal predictor. 

Bags 

The order in which old examples appear should not make any difference, and 
in order to formalize this point, we need the concept of a bag (also called a 
multiset). A bag of size n E N is a collection of n elements some of which 
may be identical; a bag resembles a set in that the order of its elements is 
irrelevant, but it differs from a set in that repetition is allowed. To identify a 
bag, we must say what elements it contains and how many times each of these 
elements is repeated. We write 1.~1,. . . , znJ for the bag consisting of elements 
zl, . . . , z,, some of which may be identical with each other. 

Although the elements of a bag are not ordered, there is an ordering in our 
notation, and we will make use of it. The bag 2zl,. . . , znoJ is the bag we get 
from zl, . . . , ,220 when we ignore their order, but because we have identified 
the bag using the elements in a certain order, we can manipulate it using our 
knowledge of this order. We can, for example, talk about the bag we get when 
we remove z6 (while leaving any other zi that might be equal to z6); this is a 
bag of size 19 - the bag 1.~1,. . . , zs, z7,. . . , zzoJ. 

We write z ( ~ )  for the set of all bags of size n of elements of a measurable 
space Z. The set z ( ~ )  is itself a measurable space. It can be defined formally 
as the power space Zn with a nonstandard o-algebra, consisting of measurable 
subsets of Zn that contain all permutations of their elements. We write z(*) 

for the set of all bags of elements of Z (the union of all the ~ ( ~ 1 ) .  

Nonconformity and conformity 

As we have already said, a nonconformity measure is a way of scoring how dif- 
ferent a new example is from a bag of old examples. Formally, a nonconfomnity 
measure is a measurable mapping 
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to each possible bag of old examples and each possible new example, A assigns 
a numerical score indicating how different the new example is from the old 
ones. 

It is easy to invent nonconformity measures, especially when we already 
have methods for prediction at hand: 

If the examples are merely numbers (Z = R) and it is natural to take the 
average of the old examples as the simple predictor of the new example, 
then we might define the nonconformity of a new example as the absolute 
value of its difference from the average of the old examples. Alternatively, 
we could use instead the absolute value of its difference from the median 
of the old examples. 
In a regression problem where examples are pairs of numbers, say zi = 
(xi, yi), we might define the nonconformity of a new example (x, y) as 
the absolute value of the difference between y and the predicted value jj 
calculated from x and the old examples. 

We will discuss this way of detecting nonconformity further at the end of this 
section. But whether a particular function on z(*) x Z is an appropriate way 
of measuring nonconformity will always be open to discussion, and we do not 
need to enter into this discussion at this point. In our general theory, we will 
call any measurable function on z(*) x Z taking values in the extended real 
line a nonconformity measure. 

Given a nonconformity measure A, a sequence 21,. . . , zl of examples, and 
an example z, we can score how different z is from the bag Izl,.  . . , zlJ; namely, 
A(Iz1,. . . , zlJ, z) is called the nonconformity score for z. 

Of course, instead of looking at functions that we feel measure nonconfor- 
mity, we could look at functions that we feel measure conformity. We call such 
a function, say B, a conformity measure, and we can use it to define confor- 
mity scores B(Izl,. . . , zlJ, z). Formally, a conformity measure is a measurable 
function of the type z(*) x Z 4 (so there is no difference between conformity 
measures and nonconformity measures as mathematical objects). If we begin 
in this way, then nonconformity appears as a derivative idea. Given a confor- 
mity measure B we can define a nonconformity measure A using any strictly 
decreasing transformation, say A := -B or perhaps (if B takes only posi- 
tive values) A := 1/B. Given our goal, prediction, beginning with conformity 
might seem the more natural approach. As we will explain shortly, our strat- 
egy for prediction is to predict that a new label will be among the labels that 
best make a new example conform with old examples, and it is more natural 
to emphasize the labels that we include in the prediction (the most conform- 
ing ones) rather than the labels that we exclude (the most nonconforming 
ones). But in practice, it is often more natural to begin with nonconformity 
measures. For example, when we compare a new example with an average of 
old examples, we will usually first define a distance between the two rather 
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than devise a way to measure their closeness. For this reason, we emphasize 
nonconformity rather than conformity. Doing so is consistent with tradition 
in mathematical statistics, where test statistics are usually defined so as to 
measure discrepancy rather than agreement. 

We sometimes find it convenient to consider separately how a noncon- 
formity measure deals with bags of different sizes: if A is a nonconformity 
measure, for each n = 1,2, .  . . we define the function 

as the restriction of A to z(,-~) x Z. The sequence (A, : n E N), which we 
abbreviate to (A,) when there is no danger of confusion, will also be called 
a nonconformity measure. Analogous conventions will be used for conformity 
measures. 

p-values 

Given a nonconformity measure (A,) and a bag 2.~1, .  . . , z,I, we can compute 
the nonconformity score 

for each example zi in the bag. Because a nonconformity measure (A,) may 
be scaled however we like, the numerical value of ai does not, by itself, tell 
us how unusual (A,) finds zi to be. For that, we need a comparison of ai to 
the other aj. A convenient way of making this comparison is to compute the 
fraction 

I{j = 1, ..., n : q  >ai)[ 
n 

(2.16) 

This fraction, which lies between l l n  and 1, is called the p-value for zi. It is 
the fraction of the examples in the bag as nonconforming as zi. If it is small 
(close to its lower bound l l n  for a large n), then zi is very nonconforming (an 
outlier). If it is large (close to its upper bound I) ,  then zi is very conforming. 

If we begin with a conformity measure (B,) rather than a nonconformity 
measure, then we can define the p-value for zi by 

where the pj are the conformity scores. This gives the same result as we would 
obtain from (2.16) using a nonconformity measure (A,) obtained from (B,) 
by means of a strictly decreasing transformation. 

Definition of conformal predictors 

Every nonconformity measure determines a confidence predictor. Given a new 
object x, and a level of significance, this predictor provides a prediction set 
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that should contain the object's label y,. We obtain the set by supposing that 
y, will have a value that makes (x,, y,) conform with the previous examples. 
The level of significance determines the amount of conformity (as measured 
by the p-value) that we require. 

Formally, the conformal predictor determined by a nonconformity measure 
(A,) is the confidence predictor r obtained by setting 

equal to the set of all labels y E Y such that 

where 

In general, a conformal predictor is a conformal predictor determined by some 
nonconformity measure. 

The Ieft-hand side of (2.18) is the p-value of (x,, y) in the bag consisting 
of it and the old examples (cf. (2.16)). So our prediction with significance level 
E (or confidence level 1 - E) is that the value of y, will make (x,, y,) have a 
p-value greater than E when it is bagged with the old examples. We are 98% 
confident, for example, that we will get a value for y, that gives (x,, y,) a 
p-value greater than 0.02. In other words, we are 98% confident that 

number of examples that conform worse or the same as (x,, y,) 
n 

will exceed 0.02. 
If A is a conformity measure, the conformal predictor determined by A is 

defined by (2.18) with ">" replaced by "I". 

Validity 

Proposition 2.3. All conformal predictors are conservative. 

It follows by Proposition 2.2 that a conformal predictor is asymptotically con- 
servative. Of course, more can be said. Using the law of the iterated logarithm 
instead of the law of large numbers, we can strengthen (2.12) to 
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We will also state two finite-sample implications of Proposition 2.3: Ho- 
effding's inequality (see p. 287) implies that, for any positive integer N and 
any constant 6 > 0, 

the central limit theorem implies that, for any constant c, 

limsup P {w : Er&(r, w) 2 Nr + c f l )  < - e-U2/2d~  . 
N-O0 

For a graphical illustration of asymptotic conservativeness, see Fig. 1.5 on 
p. 10. 

Smoothed conformal predictors 

In this section we introduce a modification of conformal predictors which will 
allow us to simplify and strengthen Proposition 2.3. The smoothed confor- 
mal predictor determined by the nonconformity measure (A,)  is the following 
randomized confidence predictor r :  the set 

consists of the y E Y satisfying 

where ai are defined, as before, by (2.19). The left-hand side of (2.20) is called 
the smoothed p-value. 

The main difference of (2.20) from (2.18) is that in the former we treat the 
borderline cases ai = a, more carefully. Instead of increasing the p-value by 
l l n  for each a$ = a,, we increase it by a random amount between 0 and l l n .  

When n is not too small, it is typical for almost all al, . . . , a, to be 
different, and then there is very little difference between conformal predictors 
and smoothed conformal predictors. 

Proposition 2.4. Any smoothed conformal predictor is exactly valid. 

This proposition will be proved in Chap. 8 (as a special case of Theorem 8.1 
on p. 193). It immediately implies Proposition 2.3: if a smoothed conformal 
predictor r and a conformal predictor r t  are constructed from the same non- 
conformity measure, the latter's errors err; never exceed the former's errors 
err,, err; I err,. It also implies 

Corollary 2.5. Every smoothed conformal predictor is asymptotically exact. 
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A general scheme for defining nonconformity 

There are many different ways of defining nonconformity measures; we will 
consider them more systematically in the following two chapters, and here we 
will only explain the most basic approach, which in the next section will be 
illustrated in the case of regression, Y = R. 

Suppose we are given a bag 2 ~ 1 , .  . . , z,J and we want to estimate the 
nonconformity of each example zi in the bag, as in (2.15). (It is clear that the 
values (2.15) determine the nonconformity measure, and we will often define 
nonconformity measures by specifying the nonconformity scores (2.15).) 

There is a natural solution if we are given a simple predictor (2.2) whose 
output does not depend on the order in which the old examples are presented. 
The simple predictor D then defines a prediction rule D1zl,...,z,~ : X t Y by 
the formula 

D1zl, ..., ~,J (x )  := D(z1,. -.,  z n , ~ )  . 
A natural measure of nonconformity of zi is the deviation of the predicted 
label 

Gi := ..., znJ("i) (2.21) 

from the true label yi. In this way any simple predictor, combined with a 
suitable measure of deviation of & from yi, leads to a nonconformity measure 
and, therefore, to a conformal predictor. 

The simplest way of measuring the deviation of & from yi is to take the 
absolute value lyi - of their difference as ai .  We could try, however, to 
somehow "standardize" lyi -- taking into account typical values we expect 
the difference between yi and & to take given the object xi. Yet another 
approach is to take ai := lyi - where &i) is the deleted prediction 

computed by applying to xi the prediction rule found from the data set with 
the example zi deleted. The rationale behind this deletion is that zi, even if 
it is an outlier, can influence the prediction rule D1zl,...,z,~ SO heavily that Gi 
will become close to yi, even though yi can be very far from $(i). 

More generally, the prediction rule q z l  ,..., znJ (01. q z l  ,..., zi-l,zi+l ,..., z n ~ )  
may map X to some prediction space Y, not necessarily coinciding with Y 
(e.g., Y can be the set of all probability distributions on Y). An invariant 
simple predictor is a function D that maps each bag lzl, .  . . , znJ of each size 
n to a prediction rule D1zl,...,z,~ : X Y and such that the function 

of the type z(,) x X + Y is measurable for all n. A discrepancy measure is a 
measurable function A : Y x Y t R. Given an invariant simple predictor D 
and a discrepancy measure A, we define functions A,, n = 1,2,. . . , as follows: 
for any ((XI, yl), . . . , (x,, y,)) E Z*, the values 
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or the formula 

It can be checked easily that in both cases (A,) form a nonconformity measure. 

2.3 Ridge regression confidence machine 

In this section we will implement conformal prediction based on (2.23) and 
(2.24) concentrating on the case where the underlying simple predictor is 
ridge regression or nearest neighbors regression, which are two of the most 
standard regression algorithms. In the case of regression there is an obvious 
difficulty in implementing the idea of conformal prediction: it appears that 
to form a prediction set (2.17) we need to examine each potential classifica- 
tion y (cf. (2.19)). We will see, however, that there often is a feasible way to 
compute (2.17); in particular, this is the case for ridge regression and nearest 
neighbors regression. (We will make little effort to optimize the computa- 
tional resources required, so "feasible" essentially means "avoiding examining 
infinitely many cases" here. Much faster algorithms will be constructed in 
s4.1.) 

Least squares and ridge regression 

Ridge regression and its special case, least squares, are among the most widely 
used regression algorithms. Least squares is the classical algorithm (going back 
to Gauss and Legendre), and ridge regression is its modification proposed in 
the 1960s. In this subsection we will describe least squares and ridge regression 
as simple predictors; for further details, see, e.g., Montgomery et al. 2001. 

Suppose X = RP (objects are vectors consisting of p attributes), Y = R 
(we are dealing with the problem of regression), and we are given a train- 
ing set2 21,. . . , zn. To approximate the data, the ridge regression procedure 
recommends calculating the value w E Rp where 

n 

allwj12 + E ( y i  - w - -+ min (2.25) 
i=l 

2 ~ t  would be more correct to say "training sequence" or "training bag',, since we 
do not assume that all zi are different, but we will use a more familiar term (as we 
already did in Chap. 1). 
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is attained; a is a nonnegative constant called the ridge parameter. The ridge 
regression prediction $ for the label y of an object x is then $ := w - x. Least 
squares is the special case corresponding to a = 0. 

We can naturally represent the ridge regression procedure in a matrix 
form. Let Yn be the (column-) vector 

of the labels and Xn be the n x p matrix formed from the objects 

Now we can represent the ridge regression procedure (2.25) as 

Taking the derivative in w we obtain 

Standard statistical textbooks mainly discuss the case a = 0 (least 
squares). It  is easy to see, however, that not only least squares is a special 
case of ridge regression, but ridge regression can be reduced to least squares 
as well: the solution of (2.28) for a general a 2 0 can be found as the solution 
to the least squares problem 

where P is Y, extended by adding p 0s on top and X is Xn extended by 
adding the p x p matrix &Ip on top. 

Basic RRCM 

In this subsection we consider the conformal predictor determined by the 
nonconformity measure (2.22)-(2.23), with A the Euclidean distance and D 
the ridge regression procedure. Therefore, cri are now the absolute values of 
the residuals ei := yi - $i, where $i is the ridge regression prediction for xi 
based on the training set XI ,  yl, . . . , x,, y,. Two slightly more sophisticated 
approaches will be considered in the following subsection. 

From (2.29) we can see that the ridge regression prediction for an object 
x is 

xtw = xr(XkXn + ~I,)-~x;Y, ; (2.30) 



2.3 Ridge regression confidence machine 31 

therefore, the predictions Qi for the objects xi are given by 

Pn := ($1, - .  . , Qn)' = Xn(XAXn + ~I~)-~XAY, . 

The matrix 
Hn := Xn(XAXn + ~I~)-'xA (2.31) 

is called the hat matvix (since it transforms the yi into the hatted form &) 
and plays an important role in the standard regression theory. This matrix, 
as well as I, - H,, is symmetric and idempotent when a = 0 (remember that 
a symmetric matrix M is idempotent if M M  = M). Therefore, the vector of 
nonconformity scores (a l ,  . . . , a,)' can be written in the form 

Now suppose that we know the incomplete data sequence (2.4), we are 
given a significance level 6, and we want to compute the prediction set output 
by the conformal predictor determined by the nonconformity scores ai = leii. 
Let y be a possible label for x, and Y := (yl,. . . , yn-l, y)'. Note that Y = 
(yl,. . . , yn-1, 0)' + (0,. . . ,0, y)' and so the vector of nonconformity scores can 
be represented as IA + By1 where 

and 
B = (In - Hn)(O, . . . , O ,  1)' . 

Therefore, each ai = ai(y) varies piecewise-linearly as we change y. It is clear 
that the p-value p(y) (defined to be the left-hand side of (2.18)) corresponding 
to y can only change at points where ai(y) - a,(y) changes sign for some 
i = 1,. . . , n - 1. This means that we can calculate the set of points y on the 
real line that have the p-value p(y) exceeding E rather than having to try all 
possible y, leading us to a feasible prediction algorithm. 

For each i = 1,.  . . , n, let 

where ai and bi are the components of A and B (A = (al, . . . , a,)' and 
B = (bl,. . . , b,)'). Each set Si (always closed) will either be the real line, the 
union of two rays, a ray, an interval, a point (which is a special case of an 
interval), or empty. Indeed, as we are interested in lai + biyl we can assume 
bi 2 0 for i = 1,. . . , n (if necessary, multiply both ai and bi by -1). If bi # b, 
then ai(y) and a,(y) are equal at two points (which may coincide): 

ai - a, -- ai + an and - - . 
bi - bn bi + bn ' 

in this case, Si is an interval (possibly a point) or the union of two rays. If 
bi = b, # 0 then ai(y) = a,(y) at the only point 
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(and Si is a ray) unless ai = a,, in which case Si = R. If bi = b, = 0 ,  Si is 
either 0 or R. 

To calculate the p-value p(y )  for any potential label y of x,, we count how 
many Si include y and divide by n: 

It is clear that as y increases p(y )  can only change at  the points (2.33) 
and (2.34) and so for any threshold E we can find the explicit representa- 
tion of the set of y for which p(y )  > 6 as the union of finitely many intervals 
and rays. The following algorithm gives a slightly easier to describe implemen- 
tation of this idea; it arranges the points (2.33) and (2.34) into an increasing 
sequence y( l ) ,  . . . , y(,), adds y(,-,) := -oo and y(,+l) := oo, and then com- 
putes N ( j ) ,  the number of i such that ( y ( j ) ,  y ( j + ~ ) )  C S i ,  for j = 0 ,  . . . , m, and 
M ( j ) ,  the number of i such that y( j )  E Si ,  for j = 1, .  . . , m. The algorithm 
is given a (small) set of significance levels ~ k ,  k = 1, . . . , K ,  and outputs the 
corresponding nested family of prediction sets r i k ,  k = 1 , .  . . , K .  

ALGORITHM RRCM (RIDGE REGRESSION CONFIDENCE MACHINE) 

C := In - X n ( X k X n  + U I ~ ) - ~ X A ,  X ,  being defined by (2.27); 
A = ( a l ,  . . . ,an)' := C ( y l , .  . . , yn-l, 0)'; 
B=(b l , . . . , bn) '  :=C(O,. . . ,O,l) ';  
F O R i = l ,  ..., n: 

IF bi < 0 THEN ai := -ai; bi := -bi END IF 
END FOR; 
P := 0; 
F O R i =  1, ..., n: 

IF bi # b, THEN add (2.33) to P END IF; 
IF bi = b, # 0 AND ai # a,  THEN add (2.34) to P END IF 

END FOR; 
sort P in ascending order obtaining y( l ) ,  . . . , y(,); 
set y(o) := -oo and y(,+~) := oo; 
N ( j )  : = O ,  j=O,  ..., m; 
F O R i =  1, ..., n: 

FOR j = 0 , .  . . , m: 
IF Iai b i ~ l  L Ian + bnyl for Y E ( y ( j ) , ~ ( j + l ) )  
THEN N ( j )  := N ( j )  + 1 
END IF 

END F O R  
END FOR; 
M ( j ) : = O , j  = 1, ..., m; 
F O R i =  1, ..., n: 
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F O R j  =1, ..., m: 
IF lai + 1 2 Ian + bnY(j) I 
THEN M(j)  := M(j)  + 1 
END IF 

END FOR 
END FOR; 
FOR k = 1,.  . . , K: 

rz := (.. j :~ ( j ) /*>e(~( j )  ' 7 ~ ( j + l ) ) )  u { ~ ( j )  : M(j) /n  > €1 
END FOR. 

This algorithm is run by Predictor at  each trial n = 1,2,. . . of the on-line 
prediction protocol (given on p. 20). 

Let us suppose that the number p of attributes is constant. It is clear that 
Algorithm RRCM requires computation time 0(n2). A simple modification of 
the algorithm, however, reduces the required computation time to O(n log n). 

First, it is clear that 

and 

can be computed in time O(n). Sorting P can be done in time O(n log n) (see, 
e.g., Cormen et al. 2001, Part 11). Therefore, it suffices to show that the two 
double loops (computing N and computing M) in Algorithm RRCM can be 
implemented in time O(n). Instead of computing the array N(j ) ,  j = 0,. . . , m, 
directly, we can first compute N'(j) := N(j )  - N ( j  - I), j = 0,. . . , m, with 
N(-1) := 0; it is easy (takes time O(n)) to compute N from N'. Analogously, 
we can compute M1(j) := M(j) - M ( j  - I), j = 1,. . . ,m ,  with M(0) := 0, 
instead of M.  To find N' and MI in time O(n), initialize Nt(j) := 0, j = 
0,. . . , m, Mt(j) := 0, j = 1,. . . , m, and for each example i = 1,.  . . , n do the 
following: 

if Si (see (2.32)) is empty, do nothing; 
if Si contains only one point, Si = { Y ( ~ ) ) ,  set M'(j) := M1(j) + 1 and 
Mt( j  + 1) := M'(j + 1) - 1 (assignments that do not make sense, such as 
M'(j + 1) := M'(j 4- 1) - 1 for j = m, are simply ignored); 
if Si is an interval [y(j,), Y ( ~ , ) ]  and jl < j2, set Mt(j l)  := Mt(jl)  + 1, 

I ' . I ' M (32 + 1) := M'(j2 + 1) - 1, N'(j1) := Nf(jl)  + 1, N1(jz) .- N (32) - 1; 
if Si is a ray (-oo, ~ ( j ) ] ,  set M'(1) := M1(l)+l, M t ( j + l )  := Mf( j+ l )  -1, 
N'(0) := N'(0) + 1, N1(j) := N'(j) - 1; 
if Si is a ray oo), set M'(j) := M1(j) + 1, Nt(j)  := Nt(j) + 1; 
if Si is the union (-oo, ~ ( j , ) ]  U [y(j2), oo) of two rays such that jl < j2, set 

.- M'(1) := M1(l) + 1, Mf(j1 + 1) := M1(jl + 1) - 1, M1(j2) .- M1(j2) + 1, 
N'(0) := N'(0) + 1, Nt(jl) := Nt(jl) - 1, Nr(j2) := N1(j2) + 1; 
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0 if Si is the real line (-oo,oo), set Mf( l )  := Mf(l)  + 1 and Nf(0) := 

Nf(0) + 1. 

Two modifications 

The algorithm developed in the previous subsection can be easily modified 
to allow two alternative ways of computing nonconformity scores. To simplify 
formulas, we assume a = 0 in this subsection (i.e., we will consider least 
squares). A least squares confidence machine (LSCM) is an RRCM with the 
ridge parameter a set to 0. 

First we consider the special case of (2.24) where ai is defined to be the 
absolute value 1 yi - jj(q I of the deleted residual e(i) := yi where jj(-i) is 
the least squares prediction for yi computed from xi based on the training set 
XI ,  yl, . . . , xi-1, yi-1, xi+l, Yi+l,.. . , xn, y n  It is well known in statistics that 
to compute the deleted residuals e(i) we do not need to perform n regressions; 
they can be easily computed from the usual residuals ei = lyi - jjil by the 
formula 

where hii is the ith diagonal element of the hat matrix H. (For a proof, see 
Montgomery et al. 2001, Appendix C.7.) 

Let us call the conformal predictor determined by the nonconformity scores 
ai := Je(i)l the deleted LSCM. Algorithm LSCM will implement the deleted 
LSCM if A and B are redefined as follows: 

can be computed from (X;Xn)-l in time O(1) (again assuming that the 
number p of attributes is constant), and so the deleted LSCM can also be 
implemented in time O(n log n). 

Another natural modification of LSCM is half-way between the LSCM and 
the deleted LSCM: the nonconformity scores are taken to be 

We will explain the motivation behind this choice momentarily, but first de- 
scribe how to implement the studentized LSCM determined by these noncon- 
formity scores. The implementation is just Algorithm LSCM with A and B 
redefined as 
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The computation time is again O(n log n). 
Now we explain the standard motivation for studentized LSCM. (Remem- 

ber that this motivation has no bearing on the validity of the constructed 
conformal predictor; in particular, the smoothed version of this confidence 
predictor will make errors independently with probability 6 at each signifi- 
cance level E regardless whether the assumption of normal noise we are about 
to make is satisfied or not; cf. $10.3.) Imagine that the labels yi are generated 
from the deterministic objects Xi  in the following way: 

where Ji are independent normal random variables with the mean 0 and same 
variance a2 (random noise). Set := ([I,. . . , En)'. Since the vector of residuals 
is e = (In - Hn)Yn (see above), we obtain 

for any fixed w (the true parameters); therefore, the covariance matrix of the 
residuals is 

since var(<) = 021n and I, - Hn is symmetric and idempotent. We can see 
that the variance of ei is (1 - hii)a2, and the scaling of the residuals ei by 
dividing by will equalize their variances (and even their distributions, 
since by (2.38), ei are normally distributed). 

Notice that according to our motivational model (2.37) the level of noise 
Ji does not depend on the observed object xi (the variance of Ji remains the 
same, a2).  Even in this case, it may be useful to scale residuals. If we suspect 
that noise can be different in different parts of the object space, heavier scaling 
may become necessary for satisfactory prediction. 

Dual form ridge regression 

Least squares and ridge regression procedures can only deal with situations 
where the number of parameters p is relatively small since they involve invert- 
ing a p x p matrix. They are carried over to high-dimensional problems using 
the so-called "kernel trick", introduced in machine learning by Vapnik (see, 
e.g., Vapnik 1995, 1998). (The formulas arrived at  by using the kernel trick 
coincide with those obtained by means of Gaussian processes and reproducing 
kernel Hilbert spaces; see 52.7.) 

We first state the ridge regression procedure in the "dual form". The tra- 
ditional statistical approach to dualization is to use the easy-to-check matrix 
equality 

Xn(XAXn + a&)-' = (XnXA + UI~)-'X, , (2.39) 

which can be equivalently rewritten as 
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(To see that (2.39) is true, multiply it by (XnXA + aIn) on the left and 
(XAXn + aIp) on the right.) Using (2.39), we can rewrite the ridge regression 
prediction for an object x based on examples (XI, yl , . . . , x,, yn) as 

where the n x p matrix Xn and vector Yn are defined as before. The crucial 
property of the representation jj = YA(XnXA + a ~ ~ ) - ~ X , x  is that it depends 
on the objects XI,. . . , xn, x only via the scalar products between them. In 
particular, if the object space X is mapped into another Euclidean space 
(called the feature space) H, F : X -t H, and ridge regression is performed 
in the feature space, the prediction (2.40) can be written in the form 

where Kn is the matrix with elements (Kn)i,j := K:(xi,xj), kn is the vector 
with elements (kn)i := K ( x ,  xi), and K: is the kernel, defined by 

for all x('), x ( ~ )  E X. The hat matrix in the dual representation is 

and if ridge regression is carried out in the feature space, this becomes 

Now it is easy to represent the RRCM algorithm in the kernel form: the 
only difference from Algorithm RRCM is that now C is defined as In - Hn 
with Hn given by (2.43). 

The computation time of the kernel form of the RRCM algorithm is 0(n2). 
This can be seen from the well-known (see, e.g., Henderson and Searle 1981, 
(8)) and easy-to-check formula 

where K is a square matrix, k a vector, n a number, and 

Indeed, by this formula (Kn + aIn)-l can be updated from the previous trial 
of the on-line learning protocol in time 0(n2),  and both 
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and 
B = (0,. . . , O ,  1)' - (Kn + UI~)-' (Kn(0,. . . , O ,  1)') 

can be computed in time 0(n2). There are some conditions on the validity of 
formula (2.44), but they are satisfied in our context: the theorem on normal 
correlation (see, e.g., Shiryaev 1996, Theorem 11.13.2) implies that d is well- 
defined (and positive) whenever the matrix ($  :) is positive definite; the 
latter condition is satisfied when the formula is used for updating (K, + 
aIn)-l, a > 0, to (Kn+l + U I , + ~ ) - ~  (in which case K = K, + aIn, k = k,, 
and K = IC(xn7 x,) + a). 

It is easy to see that the above construction also works in the case where 
H is an arbitrary Hilbert space. The essence of the kernel trick is that one 
does not need to consider the feature space in explicit form (Vapnik 1998, 
$10.5.2). It is clear that any kernel (2.42) is symmetric, 

and nonnegative definite, 

x ,  . . . , x m  E a , .  . . , a E R . (2.46) 

(To see that (2.46) is true, notice that 

It turns out that the opposite statement is also true: any function K: : X2 -+ 

R that is symmetric and nonnegative definite can be represented in the 
form (2.42). There are many proofs of this result, but one of the simplest 
arguments is "probabilistic": any symmetric nonnegative definite matrix is 
the covariance matrix of a set of (zero-mean) normal random variables; the 
Daniell-Kolmogorov (Kolmogorov 1933a) theorem then immediately implies 
that any symmetric nonnegative definite function K:(x(l), x ( ~ ) )  is the "infinite 
covariance matrix" of a zero-mean Gaussian random field [(x), x E X: 

The last equality is a special case of (2.42) since the zero-mean finite-variance 
random variables with dot product 

form a Hilbert space (not necessarily separable; see, e.g., Shiryaev 1996, 
811.11). 
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Nearest neighbors regression 

Least squares and ridge regression are just two of the standard regression 
algorithms; conformal predictors can be implemented in a feasible way for 
nonconformity measures based on many other regression algorithms. Such 
an implementation is especially simple in the case of the nearest neighbors 
algorithm. 

The idea of the k-nearest neighbors algorithms, where Ic is the number 
of "neighbors" taken into account, is as follows. Suppose the object space X 
is a metric space (for example, the usual Euclidean distance is often used 
if X = Rp). To give a prediction for a new object x,, find the k objects 
xi,, . . . ,xik among the known examples that are nearest to xi in the sense 
of the chosen metric (assuming, for simplicity, that there are no ties). In 
the problem of classification, the predicted classification $, is obtained by 
"voting": it is defined to be the most frequent label among yil,. . . , yik. In 
regression, we can take, e.g., the mean or the median of yil,. . . , yik. 

We will only consider the version of the k-nearest neighbors regression 
(k-NNR) where the prediction $ for a new object x based on the training set 
(xi, yi), i = 1,. . . , n, is defined to be the arithmetic mean of the labels of the 
k nearest neighbors of x among XI,. . . , x,. It  will be easy to see that the more 
robust procedure where arithmetic mean is replaced by median also leads to 
a feasible conformal predictor. 

Consider the special case of the nonconformity scores (2.24) where ai := 
lyi - c(il 1 and $(i) is the k-NNR prediction for xi based on the training set 
(xj, yj), j = 1, .  . . , i - 1, i + 1,. . . , n. The conformal predictor determined 
by this nonconformity measure (k-NNR conformal predictor) is implemented 
by the RRCM algorithm with the only modification that ai and bi are now 
defined as follows (we assume that n > k and that all distances between the 
objects are different): 

0 a, is the minus arithmetic mean of the labels of x,'s k nearest neighbors 
and b, = 1; 

0 if i < n and x, is among the k nearest neighbors of xi, ai is xi's label 
minus the arithmetic mean of the labels of those nearest neighbors with 
x,'s label set to 0, and bi = -1/k; 

0 if i < n and x, is not among the k nearest neighbors of xi, ai is xi's label 
minus the arithmetic mean of the labels of xi's k nearest neighbors, and 
bi = 0. 

(It is obvious that the nonconformity score for the ith example is ai = lai + 
biyl, where y is the label for x, that is being tried.) 

Instead of measuring distance in the original example space X we can 
measure it in the feature space, which corresponds to using the function 
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as the distance (remember that in the case of k-NNR conformal prediction we 
are only interested in the distance up to a monotonic transformation). 

Experimental results 

In this subsection we empirically test the validity and evaluate the efficiency 
of some of the conformal predictors introduced earlier. We start from RRCM, 
reporting only results for a = 1 on the randomly permuted Boston Housing 
data set (this data set and the rationale for shuffling, counteracting possible 
deviations from exchangeability, are described in Appendix B). A dummy 
attribute always taking value 1 (to allow a non-zero intercept) was added 
to each example, and at  each trial each attribute was linearly scaled for the 
known objects to span the interval [-I, 11 (or [O,O], if the attribute took the 
same value for all known objects, as described in Appendix B). Figures 2.1- 
2.3 show the performance of RRCM in regard of its efficiency. In Fig. 2.1, the 
solid line shows, for each n = 1,. . . ,506, the median ~ , 9 ~ %  of the widths of 
the convex hulls COT)% of the prediction sets T.'%, i = 1,. . . , n, at confidence 
level 99%; similarly, the dashed line shows M : ~ ~  and the dash-dot line shows 
Miog". Figure 2.2 presents more detailed information for the performance 
at  the confidence level 95%: not only the median MZ5% of the widths of 
COT:%, i = 1,.  . . , n, but also the upper and lower quartiles of those widths; 
the cumulative number of errors at  this confidence level is also given. Both 
Figs. 2.1 and 2.2 give, for comparison, a graph reflecting the performance of 
the ridge regression procedure as a simple predictor: the dotted line shows 
the sequence 2A(n), where A(n) is the median of the sequence lyi - &I, i = 
1,. . . , n, of distances between the true label yi and the prediction tji given by 
the ridge regression procedure according to (2.30). This line lies well below the 
other lines, the main reason being that we considered confidence levels of 80% 
and above; lowering the plank to 50% leads to near coincidence (Fig. 2.3). The 
cumulative error lines are close to straight lines with correct slopes (Fig. 2.4), 
although because of the small sample size the imperfections due to statistical 
fluctuations are more noticeable than in Fig. 1.5 on p. 10. 

In fact, the RRCM's performance was not sensitive to moderate changes 
in a: e.g., running the algorithm for a = 0 (LSCM), whether modified (deleted 
or studentized LSCM) or not, produced virtually identical figures. 

The quality of prediction can be improved by using non-linear methods. 
Figure 2.5 shows the performance of the kernel RRCM with the second-order 
polynomial kernel 
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- - median width at 95% 
- .  median width at 80% 

Fig. 2.1. The on-line performance of RRCM on the randomly permuted Boston 
Housing data set (of size 506) 
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Fig. 2.2. The on-line performance of RRCM on the randomly permuted Boston 
Housing data set a t  the confidence level 95% 
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Fig. 2.3. The on-line performance of RRCM on the randomly permuted Boston 
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Fig. 2.4. The cumulative numbers of errors at  the given confidence levels for RRCM 
run on-line on the randomly permuted Boston Housing data set 
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- - median width at 95% 
- .  median width at 80% 

Fig. 2.5. The on-line performance of kernel RRCM on the randomly permuted 
Boston Housing data set 

using the same format as Fig. 2.1. 
The performance of the 1-NNR conformal predictor (as described in the 

preceding subsection) is shown, in the same format, in Fig. 2.6. The 1-NNR 
procedure performs reasonably well as a simple predictor (as the dotted line 
shows), but the prediction intervals it produces are much worse than those 
produced by more advanced methods. 

2.4 Are there other ways to achieve validity? 

In this section we will see that conformal predictors are essentially the only 
confidence predictors in a very natural class that satisfy our strong non- 
asymptotic property of validity. 

Let us say that a confidence predictor is invariant if r e ( z l , .  . . , z,-1, x,) 
does not depend on the order in which zl, . . . , z,-1 are listed. Since we assume 
exchangeability, the invariant confidence predictors constitute a natural class 
(see, e.g., the description of the "sufficiency principle" in Cox and Hinkley 
1974; later in this book, however, we will also study confidence predictors 
that are not invariant, such as inductive and Mondrian conformal predictors 
in Chap. 4). 

If TI and r2 are (deterministic) confidence predictors, we will say that rl 
is at least as good as r2 if, for any n and any E E (0, I) ,  
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- median width at 99% 
- - median width at 95% 
- .  median width at 80% 

Fig. 2.6. The on-line performance of the 1-NNR conformal predictor on the ran- 
domly permuted Boston Housing data set 

holds for almost all X I ,  y l ,  x2, y2,. . . generated by any exchangeable distribu- 
tion on Zw. 

The following proposition asserts that invariant conservatively valid con- 
fidence predictors are conformal predictors or can be improved to become 
conformal predictors. 

Theorem 2.6. Suppose Z is a Borel space. Let r be an  invariant consemra- 
tively valid confidence predictor. Then there is a conformal predictor that is 
at least as good as r. 
This proposition will be proved in $2.6 (p. 48). It is interesting that the proof 
will not use the fact that the random variables J!'), [$), . . . from the definition 
of r ' s  conservative validity are independent. This observation leads to the 
following simple result, which we state in terms of randomized confidence 
predictors. 

Proposition 2.7. Suppose Z i s  Borel. If an  invariant randomized confidence 
predictor r at each significance level E E ( 0 , l )  makes an  error with probability 
E at each trial and under any exchangeable distribution on Z", then it makes 
errors at different trials independently, at each significance level E E ( 0 , l )  and 
under any exchangeable distribution on  Z". 



44 2 Conformal prediction 

2.5 Conformal transducers 

There are two convenient ways to represent a conformal predictor: as a con- 
fidence predictor and as a "transducer". So far we have been using the first 
way; the goal of this section is to introduce the second way, which is sim- 
pler mathematically, and to discuss connections between the two. This will be 
needed in, e.g., Chap. 7, and can be skipped for now. 

A randomized transducer is a function f of the type (X x [ O , 1 ]  x Y)* + 

[O, 11. It is called "transducer" because it can be regarded as mapping each 
input sequence (xl, 71, yl,x2,72,92,. . . ) in (X x [ O , 1 ]  x Y)OO into the output 
sequence (pl,pz,. . . ) of p-values defined by p, := f (XI, 71, yl, . . . , x,, rn, y,), 
n = 1,2,. . . . We say that f is an exactly valid randomized transducer (or just 
exact randomized transducer) if the output p-values plp2.. . are always dis- 
tributed according to the uniform distribution Urn on [0, 1Im, provided the 
input examples z, = (x,, y,), n = 1,2, . . . , are generated by an exchange- 
able probability distribution on ZCO and the numbers r ~ ,  72, .  . . are generated 
independently from the uniform distribution U on [0, 11. 

We can extract exact randomized transducers from nonconformity mea- 
sures: given a nonconformity measure A, for each sequence 

define 

where a i ,  i = 1,2, .  . . , are computed from zi = (xi, yi) using A by the usual 
(cf. (2.19), p. 26) formula 

Each randomized transducer f that can be obtained in this way will be called 
a smoothed conformal transducer. 

Proposition 2.8. Each smoothed conformal transducer is an exact random- 
ized transducer. 

This proposition is a special case of Theorem 8.1 (p. 193), which will be proved 
in $8.7. 

In a similar way we can define (deterministic) conformal transducers f :  
given a nonconformity measure A, for each sequence (21,. . . ,z,) E Z* set 

where ai are computed as before. In general, a (deterministic) transducer is a 
function f of the type Z* --+ [O, 11; as before, we associate with f a mapping 
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from 2122.. . to the p-values ~ 1 ~ 2 . .  . (pn := f (21,. . . , zn)). We say that f is 
a conservatively valid transducer (or conservative transducer) if there exists a 
probability space with two sequences Jn and qn, n = 1,2,. . . , of [O, 11-valued 
random variables such that: 

the sequence &, &, . . . is distributed as Uw; 
0 for each n, vn < Jn; 
0 the joint distribution of the sequence of p-values produced by f coincides 

with the joint distribution of ql, q2,. . . , provided the examples 21, 22,. . . 
are generated from an exchangeable distribution on Zw. 

The following implication of Proposition 2.8 is obvious: 

Corollary 2.9. Each conformal transducer is conservative. 

We can fruitfully discuss confidence transducers even in the case of general 
example spaces Z, not necessarily products X x Y of object and label spaces. 
But in the latter case we can associate a confidence predictor r = f' with 
each confidence transducer f defining (2.17) (p. 26) as 

Vice versa, with any confidence predictor r we can associate the confidence 
transducer f = r' defined by 

Letting xi in (2.48) and (2.49) range over the extended object space X x [0, 11, 
we obtain the definition of the randomized confidence predictor f '  associated 
with a randomized confidence transducer f and the definition of the ran- 
domized confidence transducer r' associated with a randomized confidence 
predictor r. The definition (2.49) of p-values associated with a confidence 
transducer agrees with the definitions given earlier (see (2.16) and the left- 
hand sides of (2.18) and (2.20)). 

We will see in the next subsection that the expositions of the theory of 
hedged prediction in terms of conformal transducers and conformal predictors 
are essentially equivalent. But first we slightly strengthen Proposition 2.4. 

A randomized confidence predictor is strongly exact if, for any exchange- 
able probability distribution on Zw and any sequence (el, €2 , .  . . ) E (0, of 
significance levels, the sequence of random variables err2 ( r ,  P), n = 1,2,. . . , 
is distributed as the product B,, x B,, x - .  - of Bernoulli distributions with 
parameters €1, €2 , .  . . . It can be defined in a similar way what it means for a 
confidence predictor r to be strongly conservative. 

Theorem 8.1 will also imply the following proposition. 

Proposition 2.10. Any smoothed conformal predictor is strongly exact. 
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Normalized confidence predictors and confidence transducers 

To obtain full equivalence between confidence transducers and confidence pre- 
dictors, a further natural restriction has to be imposed on the latter: they will 
be required to be "normalized". This is a mild restriction since each confidence 
predictor can be normalized in such a way that its quality does not suffer. 

Formally, the normal form rnorm of a confidence predictor r is defined by 

We say that r is normalized if rnOr, = r .  These definitions are also applicable 
to randomized confidence predictors, in which case xi range over the extended 
object space X x [0, 11. The following proposition lists some basic properties 
of the operation ,,,, and normalized confidence predictors. 

Proposition 2.11. All conformal predictors and smoothed conformal predic- 
tors are normalized. For any confidence predictor r (randomized or determin- 
istic): 

1. rnorm is at  least as good as r ,  in the sense that 

for al lxl ,yl ,  ..., xn and E; 

2. (rnorm)norm = rnorm; 

3. r is normalized if and only if the set 

is open in (0,l) for all $1, y1, . . . , x,; 
4. If r is exact (resp. conservative, resp. strongly exact), then rnOrm is exact 

(resp. conservative, resp. strongly exact). 

Proof. All (smoothed) conformal predictors are normalized because all in- 
equalities involving E in (2.18) and (2.20) are strict. Properties 1 and 2 are 
obvious. Property 3 follow from the following restatement of the definition of 
Germ : 

Yn E r,EOrm(x~,Yl,...,xn) 

if and only if 
3E1> E :  yn E r"(X1,Y1 ,..., Xn). 

Property 4 follows from 
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The next proposition asserts the equivalence of confidence transducers and 
normalized confidence predictors (in particular, the equivalence of conformal 
transducers and conformal predictors). Remember that f '  is the confidence 
predictor associated with a confidence transducer f and F' is the confidence 
transducer associated with a confidence predictor r. 
Proposition 2.12. For each confidence transducer f ,  the confidence predictor 
f '  is normalized and f" = f .  For each normalized confidence predictor r, 
r" = r. If r = f' is the normalized confidence predictor associated with a 
confidence transducer f = r', 

for any data sequence zl, 2 2 , .  . . . If a randomized confidence transducer f 
is exact, f '  is strongly exact. If a randomized confidence predictor r is 
strongly exact, I" is exact. I f f  is a (smoothed) conformal transducer, f '  is a 
(smoothed) conformal predictor. If r is a (smoothed) conformal predictor, r' 
is a (smoothed) conformal transducer. 

Proof. Most of the statements in the proposition are obvious. Equality (2.51) 
follows from the definition of f'. This equality implies that the confidence 
transducer r' is exact for any strongly exact randomized confidence predic- 
tor r. Indeed, the p-values p, output by T' have the uniform distribution 
U on [O, l ] ,  and it remain to apply the following simple fact: if a sequence 
pl,p2,. . . of random variables distributed as U is such that, for any sequence 
( E I , E ~ ,  . . .) E (0, l )w, the random variables n = 1,2,. . . , are inde- 
pendent, then the random variables p, themselves are independent (see, e.g., 
Shiryaev 1996, the theorem in 811.5, p. 179). 0 

2.6 Proofs 

Proof of Theorem 2.1 

The proof will show that no confidence predictor satisfies even the property 
of being weakly exact, where the requirement that err:(r) be independent for 
different n is dropped and the exchangeability assumption is replaced by the 
randomness assumption. Moreover, we will see that even for a fixed n E N it is 
impossible to have the probability of err;(r) = 1 equal to 6 for all E E (0,l). 

We may assume that the examples zl, z2, . . . are generated from a power 
distribution Qw such that the probability distribution Q on Z is concentrated 
on the set {(x, y(l)), (x, ~ ( ~ 1 ) )  C Z, for some arbitrarily fixed x E X and 
y(l), y(2) E Y (remember that we assumed (XI 2 1 and IYI > 1). Therefore, 
we assume, without loss of generality, that Z = (0, l) .  Fix n E N and suppose 
that err;(r) = 1 with probability E for all E E (0, l) .  

For each k let f (k) be the probability that err:(I', (zl, .  . . ,z,)) = 1 (we 
drop z,+l, z,+2,. . . from our notation since err: does not depend on them) 
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where (zl,. . . ,z,) E (0, l), is drawn from the uniform distribution on the 
set of all binary sequences of length n with k 1s. Since the expected value 
of f (k) is E w.r. to any binomial distribution on {O,1 ,  . . . , n), the standard 
completeness result (see, e.g., Lehmann 1986, $4.3) implies that f (k) = E for 
all k = 0,1,. . . , n. Therefore, E ( : )  is an integer for all k and E, which cannot 
be true. 

Proof of Theorem 2.6 

Let E E (0, I), n E W, Q be a probability distribution on Z, and rlt) and &) be 
the random variables from the definition of the conservative validity of r corre- 
sponding to the exchangeable probability distribution Qm. For each sequence 
of examples (21,. . . , z,) E Zn let f (zl, . . . , z,) be the conditional probability 
under Qm that tk) = 1 given rljE) = errjE)(r, (zl, 2 2 , .  . . )), i = 1,.  . . , n. For 
each bag B E z(,) let f (B) be the arithmetic mean of f (21,. . . , z,) over all 
n! orderings of B. We know that the expected value of f (B) is E under any 
Qn, and this, by the completeness of the statistic that maps data sequences 
(zl, . . . , z,) to bags {zl, . . . , z,J (see Lehmann 1986, $4.3; since Z is Borel, it 
can as well be taken to be R), implies that f (B) = E for almost all (under 
any Qm) bags B. Let us only consider such bags. Define S(B, E) as the bag of 
elements z of B such that r makes an error at significance level E at trial n 
when fed with the elements of B ordered in such a way that the nth example 
is z (since r is invariant, whether an error is made depends only on which 
element is last, not on the ordering of the first n - 1 elements). It is clear that 

and 

Therefore, the conformal predictor determined by the conformity measure 

is at least as good as r. 

Proof of Proposition 2.7 

The proof is similar to the proof of the previous proposition but more com- 
plicated since it depends on the proof of Proposition 2.4. Let E E (0,l) and, 
for each n = 1,2,. . . and each bag B E z(,), let f (B) be the probability 
that err;(r) = 1 when I' is supplied with the elements of B in a random 
order (each order having the same probability lln!) and with random num- 
bers 71, . . . , I-, distributed independently according to U. Since the expected 
value of f (B) is E for any power distribution Qoo on Zm generating the ex- 
amples, the same completeness argument shows that f (B) = E for almost all 
bags B. It remains to combine this with the invariance of T and the proof of 
Theorem 8.2 (generalization of Proposition 2.4) in $8.7. 
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2.7 Bibliographical and historical remarks 

Conformal prediction 

Conformal predictors were first described by Vovk et al. (June 1999) and Saunders 
et al. (1999). The independence of errors in the on-line mode was proved in Vovk 
2002b. 

The idea of a rudimentary conformal predictor based on Vapnik's support vector 
machine was described by Gammerman et al. (January 1997) and originated a t  
the meeting (mentioned on p. XV) between Gammerman, Vapnik and Vovk in the 
summer of 1996. Having had worked for a long time on the algorithmic theory of 
randomness (the paper Vovk and V'yugin 1993 being most relevant), Vovk realized 
that Chervonenkis's old idea (dating from June 1966, according to Chervonenkis 
2004) that a small number of support vectors translates into confident predictions 
(cf. (10.6)) can be used for making hedged predictions. Let us consider the problem 
of classification (IY( is finite and small). From the point of view of the algorithmic 
theory of randomness, we can make a confident prediction for the label y, of the new 
object x, given a training set zl ,  . . . ,z,-1 if the algorithmic randomness deficiency 
is small for only one possible extension (zl, . . . , z,-1, (x,, y)), y E Y ;  we can then 
output the corresponding y as a confident prediction. (In the case of regression, 
Y = R, a confident prediction for x, is possible if the algorithmic randomness 
deficiency is small for a narrow range of y E Y .) 

Remark The reader who is not familiar with the algorithmic theory of randomness 
(which is not used in this book outside the end-of-chapter remarks) can consult 
Kolmogorov 1983, Martin-Lof 1966, V'yugin 1994, Li and Vitfinyi 1997. In the lit- 
erature on algorithmic randomness the word "algorithmic" is often omitted, but we 
will always keep it, to avoid confusion with several other, unrelated, notions of ran- 
domness used in this book. (In particular, there are no obvious connections between 
algorithmic randomness and the assumption of randomness discussed in the previous 
chapter.) The algorithmic notion randomness formalizes the intuitive notion of typ- 
icalness: an object w e R is regarded as typical of a probability distribution P on 52 
(we will also say "under P" or lLw.r. to P") if there is no reason to be surprised when 
told that w was drawn randomly from P. Using the notion of a universal Turing 
machine, it is possible to introduce the notion of algorithmic randomness deficiency, 
formalizing the degree of deviation from typicalness. For further details, see p. 218. 

There are two very different approaches to  defining algorithmic randomness de- 
ficiency: Martin-Lof's (1966) and Levin's (1976, 1984; simplified in Gacs 1980 and 
Vovk and V'yugin 1993). Kolmogorov's (1968) original definition is a special case 
of Martin-Lof's, but becomes a special case of Levin's (as simplified in Vovk and 
V'yugin 1993) if the plain Kolmogorov complexity in it is replaced by prefix com- 
plexity. Martin-Lof's definition is more intuitive, being a universal version of the 
standard statistical notion of p-value, but Levin's definition often leads to  more 
elegant mathematical results. 

The paper by Gammerman et al. (1997) was based on Levin's definition, which 
made it difficult t o  understand. Conformal predictors, which appeared in Vovk et al. 
1999 and Saunders et al. 1999, were the result of replacing Levin's definition of 
algorithmic randomness by Martin-Lof's definition in Gammerman et al. 1997. 
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After the notion of conformal predictor crystallized, the connection with the 
algorithmic theory of randomness started to disappear; in particular, in order to  
obtain the strongest possible results, we replaced the algorithmic notion of random- 
ness with statistical tests. As we said earlier, in this book we hardly ever mention 
algorithmic theory of randomness outside the end-of-chapter remarks. This evolu- 
tion does not look surprising: e.g., we argued in Vovk and Shafer 2003 that the 
algorithmic notions of randomness and complexity are powerful sources of intuition, 
but for stating mathematical results in their strongest and most elegant form it is 
often necessary to  L'translate" them into a non-algorithmic form. 

For the information on the many precursors of conformal prediction, see 310.2; 
Kei Takeuchi's definition is especially close to ours. 

A version (more sophisticated but less precise, involving arbitrary constants) of 
Theorem 2.6 was stated and proved in Nouretdinov et  al. 2003. An analogous result 
was stated by Takeuchi for his version of conformal predictors. 

Least squares and ridge regression 

The least squares procedure was invented independently by Gauss and Legendre and 
first published by Legendre in 1805 (for details, see, e.g., Plackett 1972, Stigler 1981, 
1986a). The term "hat matrix" was introduced by John W. Tukey (see Hoaglin and 
Welsch 1978). The ridge regression procedure was first described in detail by Arthur 
E. Hoerl and Robert W. Kennard (1970a, 1970b). The idea came from Hoerl's (1959) 
ridge analysis, a method of examining high-dimensional quadratic response surfaces 
(for details, see Hoerl 1985). The link between ridge analysis and ridge regression is 
provided by Hoerl's 1962 paper. 

Deleted residuals are also known as PRESS and predicted residuals, and the 
nonconformity scores (2.36) differ from "internally studentized residuals" only by 
a factor that does not affect the conformal predictor's output. We did not con- 
sider "externally studentized residuals"; for details and history, see, e.g., Cook and 
Weisberg 1982 (32.2.1). 

The RRCM was developed by Ilia Nouretdinov and published in Nouretdinov 
et al. 2001a. 

Kernel methods 

Kernel methods have their origins in the Hilbert-Schmidt theory of integral equa- 
tions (see Mercer 1909). The fundamental fact that each symmetric nonnegative 
definite function has representation (2.42) can be proved by many different meth- 
ods: see, e.g., Mercer 1909 (that paper, however, proves a slightly different result, 
"Mercer's theorem", about continuous kernels and an integral analogue of condi- 
tion (2.46)) and Aronszajn 1950 (Aronszajn's proof is based on Moore's idea; it is 
reproduced in Wahba 1990). For recent expositions, see, e.g., Scholkopf and Smola 
2002; Cristianini and Shawe-Taylor 2000; Shawe-Taylor and Cristianini 2004. 

There are several approaches to the kernel ridge regression; the three main ones 
appear to be the following: 

0 the approach adopted in this book: the objects are mapped to  an arbitrary 
(not necessarily functional or separable) Hilbert space and the prediction rule 
is chosen from among the continuous linear functionals on that space; the main 
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equation (2.41) can be obtained, for example, using the Lagrange method anal- 
ogously to  Vapnik's (1998) derivation of SVM (see Saunders et al. 1998); the 
approach based on the equality (2.39) is standard in statistics; 

0 the approach based on functional Hilbert spaces with bounded evaluation func- 
t ional~  (called reproducing kernel Hilbert spaces; the prediction rule is chosen 
from among the elements of such a space; see, e.g., Wahba 1990); 

0 the approach based on Gaussian processes: one assumes that the labels yi are 
obtained from zero-mean normal random variables with covariances cov(yi, yj) 
defined in terms of lC(xi,xj); (2.41) can then be obtained as the expected value 
of the x's label. In geostatistics this approach is known as kriging; for further 
details, see Cressie 1993 and p. 273. 

Formula (2.44), which we used for the fast updating of the inverse matrix in the 
kernel RRCM, may have been first explicitly given by Banachiewicz (1937a, 1937b); 
further references and history can be found in Henderson and Searle 1981. There are 
similar updating formulas (going back to Gauss 1823 and also reviewed in Henderson 
and Searle 1981) that could be used in the case of RRCM, but the need for speeding 
up computations is less pressing for RRCM since the matrix to be inverted is always 
of the constant size p x p. 



Classification with conformal predictors 

In this chapter we concentrate on the problem of classification, where the 
label space Y is finite. We start in $3.1 by giving two more examples of 
nonconformity measures, this time specifically for the case of classification, 
and reporting on the empirical performance of one of them. In the next sec- 
tion, 83.2, we state the main result of the chapter: there exists a "universal" 
smoothed conformal predictor whose asymptotic efficiency1 is not worse than 
that of any other asymptotically valid randomized confidence predictor, re- 
gardless of the probability distribution Q generating individual examples. In 
particular, even if for a given probability distribution Q we construct the o p  
timal, or "Bayesn2, confidence predictor r, our universal predictor will be as 
efficient as I' asymptotically, even though the former "knows nothing" about 
Q. In 83.4 we make the first step towards the proof of the main result looking 
closely at  the Bayes confidence predictor; this will allow us to set the tar- 
get for the universal predictor. The universal smoothed conformal predictor 
is constructed in $3.3. As usual, most of the actual proofs will be given in a 
separate section, $3.5. 

The learning protocol of this chapter is the same as in Chap. 2, but we 
will state it again this time including not only the variables Err; (the total 
number of errors made up to and including trial n at significance level E) and 
err: (the binary variable showing whether an error is made at trial n) but also 
the analogous variables Mult;, mult;, Emp;, empi for multiple (containing 
more than one label) and empty (containing no labels) predictions: 

Err: := 0, Mult; := 0, Emp: := 0 for all E E (0, l) ;  
F O R n = 1 , 2 ,  ... : 

Reality outputs x, E X; 

'we use the expression "asymptotic efficiency" only informally, to refer to the 
asymptotic optimality of the predictions made. In this book we never consider the 
(very interesting) question of how fast optimality is approached. 

2 ~ e  are following standard usage (see Devroye et al. 1996), despite the lack of 
connection with Bayesian learning (as discussed in, e.g., Chap. 10). 



54 3 Classification with conformal predictors 

Predictor outputs T i  C Y for all E E (0,l); 
Reality outputs yn E Y ;  

1 if yn $! T i  
err: := for all E E (0,l); 

0 otherwise 
\ 

Err; := Err;-l + err: for all E E (0,l); 

1 i f I I ' i l> l  
mult; := for all E E (0,l); 

0 otherwise 
\ 

Multk := Mult;-, + multi for all E E (0,l); 

1 if IT;] = O  
emp: := for all E E (0, l) ;  

0 otherwise 
Emp; := ~ m ~ k - ~  + emp; for all E E (0, l)  

END FOR. 

In this chapter, the label space Y is finite and equipped with the discrete 
o-algebra. 

3.1 More ways of computing nonconformity scores 

First of all we notice that the general scheme discussed at the end of 82.2 is 
applicable generally, including the case of classification. For classification, it 
is especially important to allow the case Y # Y. 

Another general remark is that any procedure of computing nonconfor- 
mity scores for regression can be used for computing nonconformity scores 
in binary classification (and there are standard ways to reduce general clas- 
sification problems to binary ones, as we will see at  the end of this section). 
Indeed, if Y consists of just two elements, we can encode them by two different 
real numbers and run the regression procedure for computing nonconformity 
scores. In particular, we can use the nonconformity scores produced by ridge 
regression and by nearest neighbors regression, as discussed in the previous 
chapter, in classification problems. 

Nonconformity scores from nearest neighbors 

There is, however, a much more direct way of applying the nearest neighbors 
idea to obtain a nonconformity measure: assuming the objects are vectors in 
a Euclidean space, the nonconformity scores can be defined, in the spirit of 
the 1-nearest neighbor algorithm, as 

where d is the Euclidean distance (i.e., an object is considered nonconforming 
if it is close to an object labeled in a different way and far from any object 
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examples 

Fig. 3.1. Cumulative errors Err; suffered by the 1-nearest neighbor conformal pre- 
dictor on the USPS data set (9298 hand-written digits, randomly permuted) plotted 
against n for the significance'levels from E = 1% to e = 5% 
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Fig. 3.2. Cumulative number of multiple predictions Mult; output by the 1-nearest 
neighbor conformal predictor on the USPS data set 
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examples 

Fig. 3.3. Cumulative number of empty predictions Empk output by the 1-nearest 
neighbor conformal predictor on the USPS data set 

labeled in the same way). It is possible for (3.1) to be equal to oo (if the 
denominator in (3.1) is zero). 

Figures 3.1-3.3 show the on-line performance of the 1-nearest neighbor con- 
formal predictor (determined by (3.1)) on the USPS data set (the original 9298 
hand-written digits, as described in Appendix B, but randomly permuted) for 
the confidence levels 95-99%. Figure 3.1 again confirms empirically the valid- 
ity of conformal predictors; the cumulative numbers of errors at  E = 1% and 
E = 5% were already given in Chap. 1 (Fig. 1.5 on p. 10). Figures 3.2 and 3.3 
show that for a vast majority of examples the prediction set contains precisely 
one label at  the considered significance levels. Figure 3.4 illustrates a feature 
of Figs. 3.2 and 3.3 that is not very noticeable since it requires examination 
of both figures simultaneously: at a fixed significance level, empty predictions 
appear only after multiple predictions disappear. (This figure cannot be di- 
rectly compared to the error rate of 2.5% for humans reported in Vapnik 1998, 
since our experiment has been carried out on the randomly permuted data set, 
whereas the test part of the USPS data set is known to be especially hard.) 

Nonconformity scores from support vector machines 

Support vector machines were proposed by Vapnik (1998, Part 11); the stan- 
dard abbreviation of "support vector machine" is SVM. We concentrate on 
the problem of binary classification, assuming that the set Y of possible labels 
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Fig. 3.4. On-line performance of the 1-nearest neighbor conformal predictor on the 
USPS data set for the significance level 2.5%. The solid line shows the cumulative 
number of errors, dotted the cumulative number of multiple predictions, and dashdot 
the cumulative number of empty predictions 
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and its element zi, each SVM, to be defined shortly, provides a very natural 
definition of the nonconformity score 

. . . .  multiple predictions 
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Suppose the objects are vectors in a dot product space H and consider the 
quadratic optimization problem 

where C is an a priori fixed positive constant and the variables w E H, 
J = (51,. .., Jn)' E Rn,  b E R (the last variable not entering (3.3)) are subject 
to the constraints 
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If this optimization problem has a solution, it is unique and is also denoted 
w, ({I,. . . ,&)I, b. The hyperplane w x + b = 0, called the optimal separating 
hyperplane, is the boundary of the prediction rule produced by the corre- 
sponding SVM: the prediction $ for a new object x is 1 if w . x + b > 0 and 
-1 if w x + b < 0 (with an arbitrary convention if w . x + b = 0). 

The next step in the development of SVM is to consider an arbitrary 
object space X (not necessarily a linear space) and apply a transformation 
F : X -+ H mapping the objects xi into the "feature vectors" F(xi) E H ,  
where H is a dot product space. This replaces xi by F(xi) in the optimiza- 
tion problem (3.3)-(3.5); as before, w ranges over H ,  but the latter is now 
different from the object space. After that the Lagrange method is applied 
to the modified problem; to each inequality in (3.4) corresponds a Lagrange 
multiplier a i .  The optimal values of ai, obtained by solving the dual problem 

where K(xi, xj) := F(xi) - F(xj), can be interpreted as follows: 

0 the examples zi with ai = 0 are typical; 
the examples with at = C are the most extreme (under the given choice 
of C) outliers; 
the examples with 0 < ai < C are intermediate, with a possible interpre- 
tation of ai as a measure of nonconformity of the corresponding example. 

This makes the solutions to the dual problem ideal for use as nonconformity 
scores (3.2). 

Remark Actually, it is quite possible that the Lagrange multipliers com- 
puted by a given computer implementation of SVM will not provide a bona 
fide nonconformity measure, with ai in (3.2) depending on the order in which 
the examples 21,. . . , zi-1, zi+l,. . . , Z, are presented. The order of the exam- 
ples may be especially important in so-called "chunking", a standard feature 
of SVM implementations. To ensure the invariance of ai w.r. to permutations 
of zl, . . . , zi-1, zi+l,. . . , zn (and so the validity of the resulting conformal pre- 
dictor), the examples 21,. . . , zn can be sorted in some way (e.g., in the lexico- 
graphic order of their ASCII representations) obtaining z,(~), . . . , z,(,), where 
n is a permutation of the set (1,. . . , n). The Lagrange multipliers computed 
from z+), . . . , z,(,) should then be permuted using n-' to obtain 01,. . . , an. 

Reducing classification problems to the binary case 

The original SVM method can only deal with binary classification problems, 
but we will now see that there are ways to use it for solving multilabel classi- 
fication problems (i.e., those with IYI > 2). 
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There are two standard ways to reduce multilabel classification problems 
to the binary case: the "one-against-the-rest" procedure and the "one-against- 
one" procedure. Suppose we have a reasonable nonconformity measure A for 
binary classification but are confronted with a multilabel classification prob- 
lem. For concreteness we will assume that the label space in the binary clas- 
sification problem is (0, 1); if it is {a, b) (e.g., a = -1 and b = 1 in the case of 
SVM), the reduction will be achieved by a further scaling, y I+ a + (b - a)y. 

The one-against-the-rest procedure gives the nonconformity measure 

where X E [O,1]  is a constant (parameter of the procedure) and ll is the indica- 
tor function (i.e., I IE = 1 if E holds and I E  = 0 if not). Intuitively, we consider 
IY I auxiliary binary classification problems and compute the nonconformity 
score of an example (x, y) as the weighted average of the scores this example 
receives in the auxiliary problems. 

The one-against-one procedure gives the nonconformity measure 

where By,,, is the bag obtained from Z(x1, yl), . . . , (xl, yl)J as follows: remove 
all (xi, yi) with yi $ {y, y'); replace each (xi, y) by (xi, 1); replace each (xi, y') 
by (xi, 0). We now have IYI - 1 auxiliary binary classification problems. 

The numbers IYI and IYI - 1 of auxiliary binary classification problems 
given above refer to computing only one nonconformity score. When using 
nonconformity measures for conformal prediction, we have to compute all 
n nonconformity scores (2.19) (p. 26) for all y E Y. With the one-against- 
the-rest procedure, we have to consider 21YI auxiliary binary classification 
problems altogether, whereas with the one-against-one procedure IY I (IY I - 
1) auxiliary binary classification problems are required. When IYI = 3, the 
numbers of auxiliary problems coincide, 21YI = IYI(IY( - I) ,  but for IY( > 3 
the one-against-the-rest procedure requires fewer auxiliary problems, 21YI < 
lYl(IYl - 1). 

3.2 Universal predictor 

We first describe the main idea of a universal confidence predictor. Let us fix 
an exchangeable probability distribution P on Zoo generating the examples 
zl, 22, . . . , and let us fix a significance level E .  Remember that Y is finite and 
IY1 > 1. 
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Slightly elaborating on the notion introduced in Chap. 2, we say that a 
confidence predictor is asymptotically conservative for P and E if the long- 
run frequency of errors does not exceed E almost surely w.r. to P ;  we know 
that each conformal predictor satisfies this property. For asymptotically con- 
servative predictors we take the number Mult, of multiple predictions as the 
principal measure of predictive efficiency. The main result of this chapter is 
the construction of a confidence predictor (a smoothed conformal predictor) 
which, for any (unknown) P and any E: (a) makes errors independently and 
with probability E at every trial (in particular, is asymptotically conservative 
for P and 6); (b) makes in the long run no more multiple predictions than any 
other randomized confidence predictor that is asymptotically conservative for 
P and E; (c) processes example n in time O(1ogn). 

There is a slight complication for item (b), dealing with predictive effi- 
ciency: we also have to deal carefully with empty predictions. The full picture 
is that our universal predictor, for any significance level E and without knowing 
the true distribution P generating the examples: 

produces, asymptotically, no more multiple predictions than any other 
randomized confidence predictor that is asymptotically conservative for P 
and E; 
produces, asymptotically, at least as many empty predictions as any other 
randomized confidence predictor that is asymptotically conservative for P 
and E and whose percentage of multiple predictions is optimal (in the sense 
of the previous item). 

The importance of the first item is obvious: we want to minimize the number of 
multiple predictions. This criterion ceases to work, however, when the number 
of multiple predictions stabilizes, as in the case of significance levels 3%-5% in 
Fig. 3.2. In such cases the number of empty predictions becomes important: 
empty predictions (automatically leading to an error) provide a warning that 
the object is untypical (looks very different from the previous objects), and 
one would like to be warned as often as possible, taking into account that the 
frequency of errors (including empty predictions) is guaranteed not to exceed 
E in the long run. 

We now start the formal exposition, only considering randomized confi- 
dence predictors. We will often use the notation mult;, empk, etc., in the 
case where Predictor and Reality are using given randomized strategies, as 
was already done in the previous chapter for err; and Err;; for example, 
mult;(r, P )  is the random variable equal to 1 if Predictor makes a multiple 
prediction at trial n and 0 otherwise. It is always assumed that the random 
numbers r, used by r and the random examples z, chosen by Reality are 
independent. 

We say that a randomized confidence predictor r is asymptotically conser- 
vative for a probability distribution P on Zoo and a significance level E E (0 , l )  
if 
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Err: (F, P )  
lim sup 5 e a.s. 

We say that r is asymptotically optimal for P and e if, for any randomized 
confidence predictor r t  which is asymptotically conservative for P and E, 

(It is natural to assume in this and other similar definitions that the random 
numbers used by I' and r t  are independent, but this assumption is not needed 
for our mathematical results and we do not make it.) Of course, the definition 
of asymptotic optimality is natural only for asymptotically conservative r. 

A randomized confidence predictor r is a universal predictor if: 

0 it is asymptotically conservative for any exchangeable P and E; 
0 it is asymptotically optimal for any exchangeable P and E; 

for any exchangeable P ,  any E, and any randomized confidence predictor 
r t  which is asymptotically conservative and optimal for P and E, 

Now we can state the main result of this chapter. 

Theorem 3.1. Suppose the object space X is Borel. There exists a universal 
predictor. 

In the next section we construct a universal predictor (processing example n 
in time O(1og n)). 

3.3 Construction of a universal predictor 

Preliminaries 

If r is a number in [0, 11, we split it into two numbers r', 7'' E [ O , 1 ]  as follows: 
if the binary expansion of r is 0.ala2.. . (redefine the binary expansion of 1 to 
be 0.11 . . . ), set r' := 0.ala3a5 . . . and 7'' := 0.a2aaas . . . . If r is distributed 
uniformly in [0, 11, then both r' and r" are, and they are independent of each 
other. 

In this chapter we will especially often apply our procedures (such as 
nonconformity measures and prediction rules) not to the original objects 
x E X but to the extended objects (x, a )  E x := X x [O, 11, where x 
is complemented by a random number a (to be extracted from one of the 
r,). Along with examples (x, y )  we will thus also consider extended examples 
(x,a,y) E z := X x [O,l] x Y. 

Let us set X := [O, 11; we can do this without loss of generality since X 
is Borel. This makes the extended object space x = [O, 112 a linearly ordered 
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set with the lexicographic order: (XI, al) < (x2,az) means that either XI  = xn 
and a1 < a 2  or x1 < 22. We say that (XI, a l )  is nearer to (x3, a3) than (x2,az) 
is if 

1x1 - X 3 , ~ l  -a31 < 1x2 -x3,a2 -a31 , (3.10) 
where 

)x,c71 := (x, 0) if (x, 0) L (0,O) 
(-2, -a) otherwise . 

If (XI, 01) and (22, a2) are extended objects, we will sometimes refer to 1x1 - 
x2,ul - c72) as the distance between (XI,  a1) and (xz, a2), even though this 
distance is a two-dimensional object (what is important is that the distances 
are linearly ordered according to (3.10)). 

Our construction will be based on the nearest neighbors algorithm, which 
is known to be strongly universally consistent in the traditional theory of 
pattern recognition (see, e.g., Devroye et al. 1996, Chap. 11); the random 
components a are needed for tie-breaking. It is still theoretically possible for 
the expression "the kth nearest neighbor" not to have a precise meaning: 
two extended objects in a training set can be at the same distance from a 
given extended object. This case, which happens with probability zero, will 
be always treated separately. 

Conformal prediction in the current context 

The smoothed conformal predictors we are going to construct will work on 
extended examples; otherwise it will be our standard notion. (It might have 
been better to call them "doubly smoothed conformal predictors", but we 
will not make such fine distinctions.) Therefore, a nonconformity measure is a 
mapping A : z(*) x z -+ W. The smoothed conformal predictor determined by 
the nonconformity measure A is the following randomized confidence predictor 

at each trial n and for each y E Y, define 

We already know that every (smoothed) conformal predictor is asymptot- 
ically conservative for every P and e. 
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Universal predictor 

Fix a strictly increasing sequence of integers Kn, n = 1,2, .  . . , such that 

as n + m. Let B = Iwl,. . . , wnJ be a bag of extended examples wi = 
(xi, ai, yi). The nearest neighbors approximation QB(Y I x, a) to the true (but 
unknown) conditional probability that an object x's label is y is defined as 

where n := 1 + 1 and NB(x, a, y) is the number of i = 1, . . . , I  such that 
yi = y and (xi, at) is one of the Kn nearest neighbors of (x, a )  in the sequence 
((XI, a l ) ,  :. . , (21, al)). If Kn 2 n or Kn < 0, this definition does not work, so 
set, e.g., QB (y 1 x, a )  := 1/IY I for all y and (x, a )  (this particular convention is 
not essential since, by (3.13), 0 < Kn < n from some n on). It is also possible 
that the phrase "Kn nearest neighbors of (x,a)" is not defined because of 
distance ties; in this case we again set QB(y I x,o)-:= l/IYI for all y. 

Define the "empirical predictability function" fB by 

For all B and (x, a )  fix some 

(e.g., take the first element of argmax, QB(Y I x, a) in a fixed ordering of Y) 
and define the nearest neighbors nonconformity measure by 

B ranging over the bags of extended examples. The nearest neighbors smoothed 
conformal predictor is defined to be the smoothed conformal predictor deter- 
mined by the nearest neighbors nonconformity measure. The nearest neighbors 
smoothed conformal predictor will later be shown to be universal. 

Proposition 3.2. Let (€1,. . . , E K )  C (0,l) be a finite set. If X = [O, 11 and 
Kn 4 rn suficiently slowly, the nearest neighbors smoothed conformal pre- 
dictor can be implemented for significance levels E = €1,. . . , EK so that com- 
putations at trial n are performed in time O(1ogn). 

Proposition 3.2 assumes a computational model that allows operations (such 
as comparison) with real numbers. If X is an arbitrary Bore1 space, for this 
proposition to be applicable X should be embedded in [ O , l ]  first; e.g., if X 
[0, 1ln, an x = (XI,. . . , xn) E X can be represented as 
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Fig. 3.5. The empirical calibration and performance curves for the 1-nearest neigh- 
bor conformal predictor on the USPS data set (randomly permuted) 

where O . X ~ J X ~ , ~ .  . . is the binary expansion of xi. We use the expression "can 
be implemented" in a wide sense, only requiring that the implementation 
should give the correct results almost surely. 

3.4 Fine details of confidence prediction 

In this section we make first steps towards the proof of Theorem 3.1. By de 
Finetti's theorem (see §A.5), each exchangeable distribution on Z" (which is 
a Borel space as long as Z is Borel: see, e.g. Schervish 1995, Lemma B.41) 
is a mixture of power distributions. Therefore, without loss of generality we 
assume that P = Q" for a probability distribution Q on Z. 

To provide the reader with extra intuition about confidence prediction in 
the case of classification, we first briefly discuss further empirical results for 
the 1-nearest neighbor conformal predictor and the USPS data set. Recall that 
Figs. 3.1-3.3 show the cumulative number of errors, the cumulative number 
of multiple predictions, and that of empty predictions. Figure 3.5 gives the 
empirical calibration curve 

Err& (r, USPS) 
E M  

N 
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Fig. 3.6. The left edge of the previous figure stretched horizontally 

and the empirical performance curve 
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for this confidence predictor; we use the strategies followed by Reality (the 
USPS data set, randomly permuted) and Predictor as arguments for Err and 
Mult. Remember that the size of the USPS data set is N = 9298. 

We denote by Qx the marginal distribution of Q on X (i.e., Qx(E) := 
Q(E x Y)) and by QYlx(y I x) the conditional probability that, for a random 
example (X,Y) drawn from Q, Y = y provided X = x (we fix arbitrarily a 
regular version of this conditional probability; the existence of regular con- 
ditional probability is obvious in our case of finite Y and also follows from 
general results: see 5A.3). We will often omit lower indices X and Y I X. 

The predictability of an object x E X is 

- 

- 

- 

- 

- 

- 

and the predictability distribution function is the increasing3 function F : 
[O, 11 + [O, 11 defined by 

w - 
0 
w 0.3 
0 m .- 
f 0.2 e 
w 
a 0.1 

0- 

3 ~ n  this book "increasing" and "decreasing" are used in Bourbaki's weak sense: 
e.g., F(P) is called increasing if F(P1) 5 F(P2) whenever PI 5 Pz. 

- 

- 

- 
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Fig. 3.7. The predictability distribution function F and how it determines the 
multiplicity curve M(E). The function F is increasing, continuous on the right, and 
F(1IIYI-) = 0. For a possibly more realistic example of a predictability distribution 
function, see Fig. 3.12 

(essentially, it is the distribution function of the image Q f of the probability 
distribution Q under the mapping f). An example of such a function F is given 
in Fig. 3.7; the graph of F is the thick line, and the unit box is also shown. 
(The intuition behind some constructions in this chapter will become clearer if 
the case of finite X with equiprobable objects is considered first; see Fig. 3.8.) 

The multiplicity curve M = MQ of Q is defined by the equality 

where t+ stands for max(t, 0); the function M is also of the type [ O , 1 ]  + [O, 11. 
(Why the terminology introduced here and below is natural will become clear 
from Propositions 3.3 and 3.5.) Geometrically, M is defined from the graph 
of F as follows (see Fig. 3.7): move the point B from A to Z until the area 
of the curvilinear triangle ABC becomes r (assuming this area does become r 
eventually, i.e., E is not too large); the ordinate of B is then M(E). The intuition 
in the case of finite X (see Fig. 3.8) is that 1 - M(E) is the maximum fraction 
of objects that are "easily predictable" in the sense that their cumulative lack 
of predictability does not exceed E (where the lack of predictability 1 - f (x) 
of each object is taken with the weight l/IX(). 

The emptiness curve E = EQ of Q is defined by 
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Fig. 3.8. The predictability distribution function (thick line) in the case where the 
object space X is finite and all objects x E X have the same probability. The objects 
are numbered, from 1 to 8, in the order of decreasing predictability (equal to the 
length of the corresponding rectangle) 

F(P) A 

D 

Fig. 3.9. The predictability distribution function F and how it determines the 
emptiness curve E(E) 

with sup0 interpreted as 0. Similarly to the case of M ( E ) ,  E(E) is defined as 
the value such that the area of the part of the box AZOD below the thick line 
in Fig. 3.9 is E (E(E) = 0 if such a value does not exist). 

Define the critical significance level €0 as 
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(the area under the thick curve in Fig. 3.7; we will later see that this coincides 
with what is sometimes called the Bayes error - see, e.g., Devroye et al. 1996, 
$2.1). It is clear that 

So far we have defined some characteristics of the distribution Q itself; 
now we will give definitions pertaining to individual confidence predictors. 
The most natural class of confidence predictors consists of what we called 
in Chap. 2 invariant confidence predictors: those confidence predictors r for 
which r e ( z l ,  . . . , zl, x) does not depend on the order of zl, . . . , q. This includes 
the definition of randomized confidence predictors as a special case (where zi 
range over X x [O,1]  x Y instead of Z and x ranges over X x [0, 11 instead of 
X) - 

The calibration curve of a randomized confidence predictor I' under Q is 
the following function of the type [O,1]  + [O, 11: 

@(E) stands for the probability of event E) .  By the Hewitt-Savage zero-one 
law (see, e.g., Shiryaev 1996, Theorem IV.1.3) in the case of invariant predic- 
tors this definition will not change if "= 1" is replaced by "> O" in (3.18). 
The performance curve of r under Q is defined by 

Mult;(r, Q") 
n < 8 ) = 1 } ;  (3.19) 

this is again a function of the type [O,1]  -+ [0, 11. The Hewitt-Savage zero-one 
law again implies that for invariant I' this will not change if "= 1" is replaced 
by "> 0". 

Notice that a randomized confidence predictor r is asymptotically con- 
servative for Q" and any e E (0 , l )  if its calibration curve C ~ , Q  is below the 
diagonal: C r , ~ ( e )  < E for any significance level e. The next proposition shows 
that it is asymptotically optimal for Qw and any e E (0,l) if its performance 
curve coincides with the multiplicity curve: PrtQ(€) = MQ(e) for all (and 
we will later see that r is asymptotically optimal for Q" and any e E (0,l) 
only if this condition holds). We will often omit the lower indices in (3.18) 
and (3.19). 
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Proposition 3.3. Let Q be a probability distribution on Z with the multi- 
plicity curve M and let E E (0,l).  If a randomized confidence predictor r 
is asymptotically conservative for Q" and E, i ts  performance curve PrYQ i s  
above M at E: P~ ,Q(E)  L M(E). Moreover, 

Of course, this proposition will continue to hold if the word "randomized" is 
omitted. The "a.s." in (3.20) refers to the probability distribution (Q x U)" 
generating the sequence 21, TI, z2,72,. . . , with U standing for the uniform 
distribution on [0, 11. 

Since we are also interested in the number of empty predictions made, we 
complement Proposition 3.3 with 

Proposition 3.4. Let Q be a probability distribution on Z with multiplicity 
curve M and emptiness curve E and let E E (0,l) be a significance level. If a 
randomized confidence predictor r is asymptotically conservative for Q and E 

and satisfies 

then 

Multz ( r ,  Q") 
lim sup 5 M(E) a s .  , 

n-00 n 

lim sup 
12-00 

Emp'(r' Qm) 5 E(r) a.s. 
n 

Theorem 3.1 immediately follows from Propositions 3.3, 3.4 and the fol- 
lowing proposition. 

Proposition 3.5. Suppose X is a Bore1 space. For any Q E P(Z) and any 
significance level E ,  the nearest neighbors smoothed conformal predictor r con- 
structed in $3.3 satisfies 

Mult; ( r ,  Q") 
lim sup 5 MQ(E) a.s. 

12-00 n 

and 

Bayes confidence predictor 

Let us now assume, for simplicity, that the distribution Q is regular, in the 
sense that the predictability distribution function F is continuous. 

In this chapter we prove that one can construct an asymptotically optimal 
smoothed conformal predictor. If, however, we know for sure that Q is the true 
distribution on Z, it is very easy to construct an asymptotically conservative 
and optimal confidence predictor. Fix a choice function Q : X t Y such that 
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Vx E X : f (x) = Q($(x) I x) (3.24) 

(to put it differently, $(x) E argmax, Q(y I x)). Define the Q-Bayes confidence 
predictor r by 

for all significance levels e and data sequences (zl, . . . , q, x) E ZI x X, 
I = 0,1,. . . . It can be shown that the Q-Bayes confidence predictor is asymp- 
totically conservative and optimal for Q" and any E E (0,l); in addition, it 
satisfies (3.23) for all E E (0,l) (it also satisfies (3.22), but this is equivalent to 
the asymptotic optimality). Non-asymptotic analogs of these properties also 
hold. (Our definition of the Q-Bayes confidence predictor is arbitrary in sev- 
eral respects: in principle, different choice functions can be used at different 
trials, the prediction can be arbitrary when F(f (x)) = max(M(~), E(E)), and 
Y can be replaced by any E Y such that Q(E  I x) := CyEE Q(y 1 x) = 1.) 

The critical significance level (3.17) is an important characteristic of the 
probability distribution Q generating the individual examples. If E > €0, the 
Q-Bayes confidence predictor will never output multiple predictions and, since 
it has to achieve the error rate E ,  will sometimes have to output empty pre- 
dictions. If, on the other hand, e < €0, there will be multiple predictions but 
no empty predictions. Figures 3.2 and 3.3 suggest that the critical significance 
level for the permuted USPS data set is between 2% and 3%. This agrees with 
the observation that the critical significance level is just the error rate of the 
Bayes simple predictor (which is restricted to outputting prediction sets rn 
with ITn/ = 1 and minimizes the expected number of errors) and the already 
mentioned fact (Vapnik 1998) that the error rate achieved by humans on the 
USPS data set is 2.5%. Notice that in Fig. 3.4 the onset of empty predic- 
tions closely follows the point where multiple predictions disappear; see also 
Figs. 3.10 and 3.11. 

3.5 Proofs 

First we establish some simple properties of the predictability distribution 
function and the multiplicity and emptiness curves. 

Lemma 3.6. The predictability distribution function F satisfies the following 
properties: 

1. F(E) = 0 for some e > 0 and F ( l )  = 1. 
2. F is increasing. 
3. F i s  continuous on  the right. 
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Fig. 3.10. Picture analogous to Fig. 3.6 for the last one thousand examples. No- 
tice a different behavior of the empirical performance curve as it approaches the 
horizontal axis as compared with Fig. 3.6. The unexpected behavior of the empir- 
ical performance curve as it approaches the vertical axis may be explained by the 
presence of ambiguous and even misclassified examples (LeCun et al. 1990) 
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If a function F : [O, 11 -+ [0, I] satisfies these properties, there exist a measur- 
able space X ,  a finite set Y ,  and a probability distribution Q on  X x Y for 
which F i s  the predictability distribution function. 

Proof. Properties 1 (cf. the caption to Fig. 3.7), 2, and 3 are obvious (and 
the last two are well-known properties of all distribution functions). The fact 
that these three properties characterize predictability distribution functions 
easily follows from the fact that the last two properties plus F(-oo) = 0 
and F(oo) = 1 characterize distribution functions (see, e.g., Shiryaev 1996, 
Theorem 11.3.1). 0 

. . . calibration curve 

We will use the notations gieft and giight for the left and right derivatives, 
respectively, of a function g. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I 

0 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 

- 

- 

Lemma 3.7. The multiplicity curve M : [O, 11 -+ [O, 11 always satisfies these 
properties: 

5% 

- performance curve 

1. M is convex. 
2. There i s  a point €0 E [0, 11 (the critical significance level) such that M(E) = 

0 for E 2 €0 and Mleft(eo) < -1; therefore, Mleft < -1 and Miig, < -1 

significance level 

I- 
- 

- 

- 

- 

- 
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Fig. 3.11. The bottom part of Fig. 3.10 stretched vertically. Notice that the slope 
of the empirical performance curve is greater than 1 in absolute value before it hits 
the horizontal axis; this agrees with Lemma 3.7. This figure suggests that, if the 
1-nearest neighbor conformal predictor were an optimal confidence predictor, the 
critical significance level for the permuted USPS data set would be close to 2.3% 
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to  the left of €0, and the function M is strictly decreasing before i t  hits the 
horizontal axis at €0. 

9. M is continuous at E = 0; therefore, i t  is continuous everywhere in [O , l ] .  

If a function M : [O, 11 -+ [O, 11 satisfies these properties, there exist a mea- 
surable space X ,  a finite set Y, and a probability distribution Q on X x Y for 
which M is the multiplicity curve. 

significance level 

- 

- 

. . . . .  , . . . . 
- 

, . . . . . 

- 

- 

- . . . .' 
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Proof sketch. For the basic properties of convex functions and their left and 
right derivatives, see, e.g., Bourbaki 1958 (51.4). The statement of the lemma 
follows from the fact that the multiplicity curve M can be obtained from the 
predictability distribution function F using these steps (labeling the horizontal 
and vertical axes as x and y respectively): 

5% 

1. Invert F :  Fl := F-l. 
2. Flip Fl around the line x = 0.5 and then around the line y = 0.5: F2 (x) := 

1 - Fl ( l  - x). 
3. Integrate F2: F3(x) := J: F2(t)dt. 
4. Invert F3: F4 := F;'. 
5. Flip F4 around the line y = 0.5: F5 := 1 - F4. 
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Fig. 3.12. An attempt to reverse engineer the predictability distribution function 
of the hand-written digits in the USPS data set. This picture was obtained from the 
solid line in Fig. 3.10 by reversing the list in the proof of Lemma 3.7 

It can be shown that M = F5, no matter which of the several natural defini- 
tions of the operation g H 9-l is used; for concreteness, we can define 

for increasing g (so that 9-l is continuous on the right). 0 

Propositions 3.3-3.5 suggest that if the 1-nearest neighbor conformal pre- 
dictor is close to being optimal on the permuted USPS data set, its empirical 
performance curve is not far from the multiplicity curve M. Visually the em- 
pirical performance curve in Figs. 3.5 and 3.6 seems to satisfy the properties 
listed in Lemma 3.7 for significance levels that are not too large or too small 
(approximately in the range 0.1%-5%); for an even better agreement, see 
Figs. 3.10 and 3.11. 

A natural idea is to reverse the process of transforming F into M and try 
to obtain an estimate of the predictability distribution function F from an 
empirical performance curve. Fig. 3.12 shows the result of such an attempt. 
Such pictures, however, should not be taken too seriously, since the differenti- 
ation operation needed in finding F is known to be unstable (see, e.g., Vapnik 
1998, 81.12). 

The following lemma parallels Lemma 3.7: 
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Lemma 3.8. The emptiness curve E : [O, 11 -+ [ O , 1 ]  always satisfies these 
properties: 

1. There i s  a point €0 E [O,1]  (namely, the critical significance level) such 
that E(E) = 0 for E I €0 and E(E) i s  concave for E 2 €0. 

2. Eiight(eo) < co and Elef,(l) L 1; therefore, for E E (€0, I), 1 5 Eiight(e) 5 
Eleft(€) < co and the function E(E) is strictly increasing. 

3. E(E) is continuous at E = €0; therefore, it is continuous everywhere in 
[O, 11. 

I f  a function E : [O, 11 -+ [O, 11 satisfies these properties, there exist a measur- 
able space X ,  a finite set Y ,  and a probability distribution Q on X x Y for 
which E i s  the emptiness curve. 

Proof sketch. The statement of the lemma follows from the fact that the 
emptiness curve E can be obtained from the predictability distribution func- 
tion F using these steps: 

1. Invert F :  Fl := F-l. 
2. Integrate FI: F2(x) := J: Fl(t)dt. 
3. Increase F2: F3(x) := F2(x) + €0, where €0 := ~6 F(x)dx. 
4. Invert F3: F4 := 8';'. 

It can be shown that E = Fq, if we define gdl(y) by (3.25) (with sup0 := 0). 
0 

Proof of Proposition 3.2 

Let z, = (x,, y,), n = 1,2 , .  . . , be the examples output by Reality and 
rl,r2,. . . be the random numbers used by the nearest neighbors smoothed 
conformal predictor. Let wl, ~ 2 , .  . . be the sequence of extended examples 
W, := (x,, r;, y,). Set 

for all y E Y and i = 1,.  . . , n. (The upper index # reminds us of the fact that 
(xi,~,!) is not counted as one of its own nearest neighbors in this definition. 
For the definition of Q, see (3.14) on p. 63.) We will also use the notation 

and let Cn(xi,r,!) (without the f, to make our notation less cumbersome) 
stand for the first element of arg maxy,=y Q z ( y  I xi, r,!) in a fixed ordering of 
-7 

Without loss of generality we assume that (€1,. . . , EK) contains only one 
significance level E, which will be omitted from our notation. We will also 
assume that all extended objects (xi,r,!) E [O, 112 are different and that all 
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pairwise distances between them are also different (this is true with probability 
one, since r,! are independent random numbers uniformly distributed on [0, 11). 
Our computational model has an operation of splitting r E [O,1]  into r1 and 
T" (or is allowed to generate both r; and T: at every trial n). 

We will use two main data structures in our implementation of the nearest 
neighbors smoothed conformal predictor: 

a red-black binary search tree (see, e.g., Cormen et al. 2001, Chaps. 12-14; 
the only two operations on red-black trees we need in this book are the 
query SEARCH and the modifying operation INSERT); 

0 a growing array of nonnegative integers indexed by numbers k E 
{-K,, -Kn + 1,. . . , K,) (where n is the ordinal number of the example 
being processed). 

Immediately after processing the nth extended example (x,, r,, y,) the con- 
tents of these data structures are as follows: 

The search tree contains n vertices, corresponding to the extended ex- 
amples (xi, ri, yi) seen so far. The key of vertex i is the extended object 
(xi, T,!) E [O, 11 2 ;  the linear order on the keys is the lexicographic order. 
The other information contained in vertex i is the random number rf, 
the label yi, the set {Q$(y 1 xi,r,!) : y E Y) of conditional probability 
estimates (3.26), the pointer to the following vertex (i.e., the vertex that 
has the smallest key greater than (xi,r,!); if there is no greater key, the 
pointer is NIL), and the pointer to the previous vertex (i.e., the vertex that 
has the greatest key smaller than (xi, r,!); if (xi, r,!) is the smallest key, the 
pointer is NIL). 

The array contains the numbers 

with cwi defined by 

where the nonconformity measure A is defined by (3.15) on p. 63 (with 
fB = f? and GB = en). 

Notice that the information contained in vertex i of the search tree is sufficient 
to find $,(xi, T,!) and oi in time O(1). 

We will say that an extended object (xj, 7;) is in the vicinity of an extended 
object (xi, r,!) if there are less than K, extended objects (xk, r i )  (strictly) 
between (xi, r,!) and (xj, r;), in the sense of the lexicographic order. 

When a new object x, becomes known, the algorithm does the following: 
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Generates r; and 7:. 
Locates the successor and predecessor of (x,, 7;) in the search tree (using 
the query SEARCH and the pointers to the following and previous vertices); 
this requires time O(log n). 
Computes the estimated conditional probabilities {Q?(y 1 x,, 7;) : y E Y); 
this also gives 6, (x, ,.A). This involves scanning the vicinity of (x, ,r;) for 
the K, nearest neighbors of (x,, r;), which can be done in time O(K,): 
the K, nearest neighbors can be extracted from the vicinity of (x,,r;) 
sorted in the order of increasing distances from (x,, 7;); since initially the 
vicinity consists of two sorted lists (to the left and to the right of (x,, r;)), 
the procedure MERGE used in the merge sort algorithm (see, e.g., Cormen 
et al. 2001, 32.3.1) will sort the whole vicinity in time O(K,). Therefore, 
the required time is O(K,) = O(1ogn). 
For each y E Y looks at what happens if the nth example is (x,, r,, y,) = 
(x,, r,, 9): computes a, and updates (if necessary) ai for (xi, r,!) in the 
vicinity of (x,, 7;); using the array and r:, finds whether y E r,. This 
requires time O(K:) = O(log n), since there are O(K,) ai's in the vicinity 
of (x,, 7;) and each of them can be computed in time O(K,). 
Outputs the prediction set r, (time O(1)). 

When the label y, arrives, the algorithm: 

Inserts the new vertex (x,, r;, r:, Yn, {Q?(y I x,, 7;) : y E Y)) in the 
search tree, repairs the pointers to the following and previous elements for 
(x,, 7;)'s left and right neighbors, initializes the pointers to the following 
and previous elements for (xn,r;) itself, and rebalances the tree (time 
O(log n)). 

a Updates (if necessary) the conditional probabilities 

for the 2Kn existing vertices (xi, r,!) in the vicinity of (x,, 7;); this requires 
time O(K:) = O(log n). The conditional probabilities for the other (xi, r,!), 
i = 1,. . . , n - 1, do not change. 
Updates the array, changing N(K,ai) for the (xi,.,!) # (xn,~;) in the 
vicinity of (x,,r;) and for both old and new values of ai and changing 
N(K,a,) (time O(K,) = O(1ogn)). 

In conclusion we discuss how to do the updates required when K, changes. 
At the critical trials n when K, changes the array and all estimated condi- 
tional probabilities Q2(ylxi, r,!) have to be recomputed, which, if done naively, 
would require time Q(nK,). 

The assumption we have made about K, so far is that K, = O(=). 
Now we also assume that K, is strictly increasing and 
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as c -+ ca. This is the full explication of the "Kn -t ca sufficiently slowly" in 
the statement of the lemma, as used in this proof. 

An epoch is defined to be a maximal sequence of ns with the same Kn. Since 
the changes that need to be done when a new epoch starts are substantial, 
they will be spread over the whole preceding epoch. An epoch is odd if the 
corresponding Kn is odd and even if Kn is even. At every trial in an epoch 
we prepare the ground for the next epoch. We will only discuss updating the 
estimated conditional probabilities ~ ? ( y  I xi,.,!); the array is treated in a 
similar way. 

By the end of epoch n = A + 1, A + 2,. . . , B we need to change B sets 
{Q:(y I xi, r,!) : y E Y )  in B - A trials (the duration of the epoch). Therefore, 
each vertex of the search tree should contain not only {QZ(y I xi,.,!)) for 
the current epoch but also {Q?(y I xi, r,!)) for the next epoch (two structures 
for holding {Qz (y I xi, r,!)) will suffice, one for even epochs and one for odd 
epochs). Our assumptions of the slow growth of Kn (see (3.28)) imply that 
B = O(B - A). This means that at each trial O(1) sets {Q?(y I xi,.,!)) for 
the next epoch should be added. This will take time O(Kn) = O(1ogn). As 
soon as a set I xi, r,!) : y E Y )  for the next epoch is added at  some 
trial, both sets (for the current and next epoch) will have to be updated for 
each new example. 

Proof of Proposition 3.3 

Let us check first that (3.20) indeed implies P(E) 2 M(E) (we will omit the 
lower indices r, Q). Since probability distributions are a-additive, (3.19) im- 
plies 

Multk(r, Qm) 
lim sup I P(E) as .  , 

n-m n 

and so we obtain from (3.20): 

P(E) 2 lim sup Multk ( r ,  Qm) lim inf  MU^; ( r ,  Q~ ) 
n-00 n n--too n 2 M(&) 

almost surely; since the two extreme terms are deterministic, we have P(E) 2 
M(E)- 

We start the actual proof with alternative definitions of calibration and 
performance curves. Complement the basic protocol given at  the beginning of 
this chapter (p. 53) in which Reality plays Q" and Predictor plays r with 
the following variables: 
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mult; := (Qx x U) (x, r) E (X x [O,l]) : { 

The predictable calibration curve of r under Q is defined by 
- 

- 
Err; 5 = 1) C(E) :=inf P : p  limsup- { { n n 

and the predictable performance curve of r under Q by 

where p refers to the probability distribution (Q x U)bO over the examples 
zl, ~ 2 , .  . . and random numbers r l , ~ , .  . . . By the martingale strong law of 
large numbers (see 5A.6) the predictable versions of the calibration and - per- 
formance curves coincide with the original versions: indeed, since Err; - Err: - 
and Mult: - Mult: are martingales (with increments bounded by 1 in abso- 
lute value) for all E with respect to the filtration Fn, n = 0,1,. . . , where each 
Fn is generated by zl, . . . , z, and TI,.  . . , rn, we have 

Err; - %$ 
lim = 0 p-a.s. 

n-im n 

and 
Mult: - mn 

lim = 0 p-a.s. 
n-im n - 

It is also clear that we can replace Mult; by Mult; in (3.20). 
Without loss of generality we can assume that Predictor's move at  trial 

n is, for each E, either {fj(xn)} (fj is defined by (3.24), p. 70) or vacuous, the 
whole label space Y. Furthermore, we can assume that 

at every trial, since the best way to spend the allowance of err: is to give 
non-vacuous predictions for objects x with the largest (topmost in Figs. 3.7 
and 3.8) representations F(f (x)). (For a formal argument, see the end of this 
proof.) Using the fact that the multiplicity curve M is convex, decreasing, and 
continuous (see Lemma 3.7), we obtain, for any significance level E, 
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the last inequality holding almost surely for an arbitrary 6 > 0 from some n 
on. 

It remains to prove formally that multh 2 M(GE,) (which is the part 
of (3.32) that we actually used). Let us fix E and 

we will write 

omitting the fixed arguments. Without loss of generality we are assuming that 
either F(x,  T) = {$(x)) or r ( x ,  T) = Y. Set 

Our goal is to show that multn 2 M(6); without loss of generality we assume 
6 < €0, where €0 is the critical significance level. To put it differently, we are 
required to show that the value of the optimization problem 

subject to the constraint 

is 1 - M(6) at best (remember that f (x) is the predictability of x; Q is a 
shorthand for Qx). By the Neyman-Pearson lemma (see, e.g., Lehmann 1986, 
Theorem 3.2.1) for some solution p there exist constants c > 0 and d E [0, 11 
such that 

1 if f (x) > c 
(3.35) 

0 i f f ( x ) < c .  

The constants c and d are defined (c uniquely and d uniquely unless the 
probability of f (x) = c is zero or c = 1; in the latter case, d = 1) from the 
condition 

which is equivalent (see Fig. 3.7 on p. 66) to 
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where F(c-) is defined as limpy, F(P). From this it is easy to obtain that 
the value of the optimization problem (3.34) is indeed 1 - M(S): using the 
notation pd(x) for the right-hand side of (3.35), we have 

the last equality following from (3.36) (except for the case c = 1, when it is 
obvious). This completes the proof. 

Proof sketch of Proposition 3.4 

The proof of Proposition 3.4 is similar to (but more complicated than) the 
proof of Proposition 3.3; this sketch can be made rigorous using the Neyman- 
Pearson lemma, as we did in the proof of Proposition 3.3. 

Along with the random variables (3.29)-(3.31) we will also need 

and 
n 

It is clear that 
Empi - mn 

lim = 0 a.s. 

Without loss of generality we can assume that Predictor's move rn at 
trial n is {$(xn)) or the empty set 0 or the whole label space Y. Furthermore, 
we can assume that, at every trial, the predictions are singular (i.e., contain 
one label) for the new objects above the straight line BC in Fig. 3.13 (more 
formally, for new extended objects (x, T )  satisfying 

intuitively, considering extended objects makes the vertical axis "infinitely di- 
visible") and that the predictions are empty for the objects below the straight 
line DG in Fig. 3.13. (Indeed, predictions of this kind are admissible in the 
sense that we cannot improve multk and empi simultaneously, and all admis- 
sible predictions are equivalent to predictions of this kind. A formal argument 
for the case where empk are omitted is given in the proof of Proposition 3.3 
above.) It is clear that for the confidence predictor to satisfy (3.21) it must 
hold that 
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Fig. 3.13. An admissible confidence predictor. The thick line is the predictability 
distribution function F; the area of the curvilinear triangle ABC is -empk; 
the area of the rectangle DZOG is w,; the (nonnegative) area of the curvilinear 
quadrangle BDEC is denoted 6, 

(otherwise mn can be decreased substantially, which contradicts (3.20); hi 
are defined in the caption of Fig. 3.13), and so we can assume, without loss 
of generality, that either 6, = 0 or emp; = 0 at every trial n, i.e., that 

m; = M(err,), emp; = E(err;) 

at  every trial. In the sequel we will omit the upper index E. 

Let us check that to achieve (3.21) the randomized confidence predictor 
must satisfy 

1 
e < eo * limsup - C ( m i  -eo)+ = o 

n--+cx3 n i,l 

where the convergence is, as usual, almost certain. We know from Lemma 3.7 
that the multiplicity curve M is convex, decreasing, continuous, and has slope 
at  most -1 before it hits the horizontal axis at E = €0. The second implication, 
(3.40), now immediately follows from the fact that, under E > €0 and (3.21), 

- 
Mult, 1 1 o = limsup - = limsup - C ~ ( e r r ~ )  2 limsup -C (€0 -erri) + 

n--ta n ,+a 72 i=l n + a  n i=l 
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The first implication, (3.39), can be extracted from the chain (3.33) in the 
proof of Proposition 3.3. Indeed, it can be seen from (3.33) that, assuming 
the predictor satisfies (3.21) and < €0, 

- 
Err, /n  + E a s .  

and, therefore, 
- 
Mult, 1 

M(r) 2 limsup - = lim sup - C M ( m i )  
n+cc 72. n i.1 

1 n 

= lim sup - M ( m i  / K O )  2 lim sup M (A E(mr 
n+cc n i=l ,+do i=l 

Err, 1 
= 1imsupM (r - - @Ti -eo) 

n+w n n i=l 

almost surely. This proves (3.39). 
Using (3.39), (3.40), and the fact that the emptiness curve E is concave, 

increasing, and (uniformly) continuous for e 2 €0 (see Lemma 3.8), we obtain: 
if E < €0, 

the last inequality holding almost surely for an arbitrary 6 > 0 from some n 
on and E being the significance level used. 
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Proof sketch of Proposition 3.5 

It will be convenient to consider a modification and extension of the function 
Q ? ( ~  1 xi, r,!) introduced in (3.26). An alternative definition of the nearest 
neighbors approximations Qn(y 1 x, a) to the conditional probabilities Q(y I x) 
is as follows: for every (x, a, y) E Z, 

(This time (x~,T;) is not prevented from being counted as one of the Kn 
nearest neighbors of (x, c) if (xi, T,!) = (x, a).) We define the empirical pre- 
dictability function fn by 

The proof will be based on the following version of a well-known funda- 
mental result. 

Lemma 3.9. Suppose Kn -+ m, Kn = o(n), and Y = { O , l ) .  For any 6 > 0 
and large enough n, 

where the outermost probability distribution p (essentially (Q x U)O0) gener- 
ates the extended examples (xi, ri, yi), which determine the empirical distri- 
butions Q,. 

Proof. This is almost a special case of Devroye et al.'s (1994) Theorem 1. 
There is, however, an important difference between the way we break distance 
ties and the way Devroye et al. (1994) do this: in Devroye et al. 1994, instead 
of our (3.10), 

is used. (Our way of breaking ties better agrees with the lexicographic order 
on [O, 112, which is useful in the proof of Proposition 3.2 and, less importantly, 
in the proof of Lemma 3.11.) It is easy to check that the proof given in Devroye 
et al. 1994 also works (and becomes simpler) for our way of breaking distance 
ties. 0 

Lemma 3.10. Suppose K, -+ oo and Kn = o(n). For any 6 > 0 there exists 
a 6* > 0 such that, for large enough n, 

in particular, 
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Proof. We apply Lemma 3.9 to the binary classification problem obtained 
from our classification problem by replacing label y E Y with 1 and replacing 
all other labels with 0: 

By Markov's inequality this implies 

which, in turn, implies 

This completes the proof, since we can take the 6 in the last equation arbi- 
trarily small as compared to the 6 in the statement of the lemma. 0 

We will use the shorthand "Qwn" for "from some n on". 

Lemma 3.11. Suppose Kn -+ oo and Kn = o(n). For any 6 > 0 there exists 
a 6* > 0 such that, for large enough n, 

In particular, 

\ 

Proof. Since 

we can, and will, ignore the upper indices # in the statement of the lemma. 
Define 

(intuitively, In(x, u) is a "soft version" of IImmy I Q ( ~ I ~ ) - Q ~ ( ~ J ~ , ~ ) ~ , ~ ) .  

The main tool in this proof (and several other proofs in this section) will 
be McDiarmid's theorem (see sA.7). First we check the possibility of its appli- 
cation. If we replace an extended object (xj, T;) by another extended object 
(x; , T;), the expression 
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will change as follows: 

0 the addend In(xi, rl) for i = j changes by 1 at most; 
0 the addends In(xi,r,!) for i # j such that neither (xj,rj) nor (x;,r:) are 

among the Kn nearest neighbors of (xi, r,!) do not change at all; 
0 the sum over the at most 4Kn (see below) addends In(xi,r,!) for i # j 

such that either (xj, 7;) or (x;, r;) (or both) are among the Kn nearest 
neighbors of (xi, r,!) can change by at  most 

The left-hand side of (3.41) reflects the following facts: the change in Qn(y I 
xi,r,!) for i # j is at  most l /Kn; the number of i # j such that (xj,r;) is 
among the Kn nearest neighbors of (xi,rl) does not exceed 2Kn (since the 
extended objects are linearly ordered and (3.10) is used for breaking distance 
ties); analogously, the number of i # j such that (x5,r:) is among the Kn 
nearest neighbors of (xi, 7;) does not exceed 2Kn. 

Therefore, by McDiarmid's theorem, 

2h4 < exp (-2d2n/ (1 + 416)~) = exp (- - (4 + 612 n, . ('a'') 

Next we find: 

(the penultimate inequality follows from Lemma 3.10) from some n on. In 
combination with (3.42) this implies 

In (xi, r,!) > 36 } < exp (-&pn)> 

in particular 
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Fig. 3.14. Case F(c)  = M(E) 

Replacing 36 by 6, we obtain that, from some n on, 

which completes the proof. 0 

We say that an extended example (xi, Ti, yi), i = 1,. . . , n, is n-strange 
if yi # &(xi,r;); otherwise, (xi,ri, yi) will be called n-conforming. We will 
assume that (f,f (xi, r;), 1 - r,!'), i = 1, . . . , n, are all different for all n; even 
more than that, we will assume that r,!', i = 1,2, .  . . , are all different (we can 
do so since the probability of this event is one). 

Lemma 3.12. Suppose (3.13) (p. 63) is satisfied and e 5 €0. With probability 
one, the L(1 - M(e))nJ extended examples with the largest (in the sense of 
the lexicographic order) (f,f (xi, r;), 1 - r,!') among (XI, 71, YI), . . . , (x,, rn,  yn) 
contain at most ne + o(n) n-strange extended examples as n -+ oo. 

Proof. Define 
c := sup{P : F(P)  < M(E)) . 

It  is clear that 0 < c < 1. Our proof will work both in the case where F(c) = 
M(E) and in the case where F(c) > M(e), as illustrated in Figs. 3.14 and 3.15. 

Let 6 > 0 be a small constant (we will let 6 + 0 eventually). Define a 
"threshold" (ck, c:) E [O, 112 requiring that 

if F(c) > M(E); we assume that 6 is small enough for 
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Fig. 3.15. Case F(c)  > M(E) 

to hold (among other things this will ensure the validity of the defini- 
tion (3.43)). If F(c) = M ( E ) ,  we set ( c i ,  c:) := (c  + 4 0 ) ;  in any case, we 
will have 

Let us say that an extended example (x i ,  ri, yi) is above the threshold if 

(f? (xi ,  r:), 1 - r; ) > (c;, c:) ; 

otherwise, we say it is below the threshold. Divide the first n extended examples 
(x i ,  ri, yi), i = 1,. . . , n ,  into five classes: 

Class I: Those satisfying f (x i )  I c  - 26. 
Class 11: Those that satisfy f ( x i )  = c  and are below the threshold. 
Class 111: Those satisfying c  - 26 < f ( x i )  5 c  + 26 but not f ( x i )  = C. 

Class IV: Those that satisfy f (x i )  = c  and are above the threshold. 
Class V: Those satisfying f ( x i )  > c  + 26. 

First we explain the general idea of the proof. The threshold (c;,c:) was 
chosen so that approximately L(1-M(e))nJ of the available extended examples 
will be above the threshold. Because of.this, the extended examples above the 
threshold will essentially be the [(l  - M ( ~ ) ) n j  extended examples with the 
largest ( f , f ( x i ,  r i ) ,  1-72!') referred to in the statement of the lemma. For each 
of the five classes we will be interested in the following questions: 

0 How many extended examples are there in the class? 
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How many of those are above the threshold? 
How many of those above the threshold are n-strange? 

If the sum of the answers to the last question does not exceed nc by too much, 
we are done. 

With this plan in mind, we start the formal proof. (Of course, we will not 
be following the plan literally: for example, if a class is very small, we do not 
need to answer the second and third questions.) The first step is to show that 

from some n on; this will ensure that the classes are conveniently separated 
from each other. We only need to consider the case F(c) > M(E). The in- 
equality ck < c + 6 follows from 

(combine Lemma 3.10 with (3.44)). The inequality c - 6 < ck follows from 

Now we are ready to analyze the composition of our five classes. Among 
the Class I extended examples at most 

will be above the threshold from some n on almost surely (by Lemma 3.11 and 
the Borel-Cantelli lemma). None of the Class I1 extended examples will be 
above the threshold, by definition. The fraction of Class I11 extended examples 
among the first n extended examples will tend to 

as n -+ oo almost surely. 
To estimate the number NiV of Class IV extended examples among the 

first n extended examples, we use McDiarmid's theorem. If one extended ex- 
ample is replaced by another, NAv will change by at most 2Kn + 1 (since 
this extended example can affect f,f(xi, rl) for at most 2Kn other extended 
examples (xi, ~ i ,  yi)). Therefore, 

the assumption Kn = o n/ lnn and the Borel-Cantelli lemma imply that (7) 
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from some n on almost surely. Since 

(see (3.45)), we have 

from some n on almost surely. Of course, all these examples are above the 
threshold. 

Now we estimate the number NAv+tr of n-strange extended examples of 
Class IV. Again McDiarmid's theorem implies that 

from some n on almost surely. Now, from some n on, 

in the case F(c) > M(e); the first inequality in this chain follows from 
Lemma 3.10: indeed, this lemma implies that, unless an event of the small 
probability e-6*(n-1) + 6 happens, 

If F(c) = M(E), the lines (3.50) and (3.51) of that chain have to be changed 
to 

(where the obvious modification of Lemma 3.10 with all "> 6" changed to 
"2 6" is used), but the inequality between the extreme terms of the chain still 
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holds. Therefore, the number of n-strange Class IV extended examples does 
not exceed 

((F(c) - M(e))(l - c) + 56) n (3.53) 

from some n on almost surely. 
By the Bore1 strong law of large numbers, the fraction of Class V extended 

examples among the first n extended examples will tend to 

as n -+ oo almost surely. By Lemma 3.11, the Borel-Cantelli lemma, 
and (3.46), almost surely from some n on at least 

extended examples in Class V will be above the threshold. 
Finally, we estimate the number NJ+tr of n-strange extended examples of 

Class V among the first n extended examples. By McDiarmid's theorem, 

from some n on almost surely. Now 

from some n on (the first inequality follows from Lemma 3.10, as in (3.52)). 
Therefore. 

from some n on almost surely. 
Summarizing, we can see that the total number of extended examples 

above the threshold among the first n extended examples will be at least 
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(see (3.49) and (3.55)) from some n on almost surely. The number of n-strange 
extended examples among them will not exceed 

(see (3.47), (3.48), (3.53), and (3.56)) from some n on almost surely. Com- 
bining equations (3.57) and (3.58), we can see that the number of n-strange 
extended examples among the [(l - M(6))nJ extended examples with the 
largest (f? (xi, r,!), 1 - 7 . )  does not exceed 

from some n on almost surely. Since 6 can be arbitrarily small, the coefficient 
in front of n in the last expression can be made arbitrarily close to 

which completes the proof. 0 

Lemma 3.13. Suppose (3.13) is satisfied. The fraction of n-strange extended 
examples among the first n extended examples (xi, ri, yi) approaches €0 asymp- 
totically with probability one. 

Proof sketch. The lemma is not difficult to prove using McDiarmid's theorem 
and the fact that, by Lemma 3.11, Q(jj,(xi, ri) I xi) will typically differ lit- 
tle from f(xi). Notice, however, that the part that we really need (that the 
fraction of n-strange extended examples does not exceed €0 + o(1) as n -+ oo 
with probability one) is just a special case of Lemma 3.12, corresponding to 
E = €0. 0 
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Lemma 3.14. Suppose that (3.13) is satisfied and E > €0. The fraction 
of n-conforming extended examples among the LE(E)nJ extended examples 
(xi, ri, yi), i = 1, .  . . , n, with the lowest (fz(xi, rl), 1 - 7:) does not exceed 
E - €0 + o(1) as n -+ oo with probability one. 

Lemma 3.14 can be proved analogously to Lemma 3.12. 

Lemma 3.15. Let 3 1  2 3 2  > . - .  be a decreasing sequence of c-algebras and 
J1, J2 . . . be a bounded adapted (in the sense that J, is 3,-measurable for all 
n) sequence of random variables such that 

limsupE(J, 1 3,+1) < 0 a.s. 
n-cc 

Then 

l i m s u p L x J i  5 0  a.8. 
n-cc i=l 

Proof. Replacing, if necessary, J, by (n - E(Jn I 3,+1), we reduce our task 
to the following special case (a reverse Bore1 strong law of large numbers): 
if <I,&,. . . is a bounded reverse martingale difference, in the sense of being 
adapted and satisfying Qn : E(J, I = 0, then 

1 
lim - x & = 0 a s .  

n-+m n i=l 

Fix a bounded reverse martingale difference tl, (2,.  . . ; our goal is to prove 
(3.59). By (the martingale version of) Hoeffding's inequality (see sA.7) applied 
to the martingale difference (ti, Fi), i = n, . . . ,1, 

where C is an upper bound on sup, [<,I. Combined with the Borel-Cantelli- 
Levy lemma, (3.60) implies (3.59). 0 

Now we can sketch the proof of Proposition 3.5. Define 3,, n = 1,2,. . . , 
to be the c-algebra on zm generated by the bag of the first n - 1 extended 
examples (xi, ri , yi) , i = 1, . . . , n - 1, and the sequence of extended examples 
(xi, ri , yi), i = n, n + 1, . . . (starting from the nth extended example). 

Suppose first that E < €0. Consider the l(l-M(~-G))n] extended examples 
with the largest (f,f(xi, T:), 1 - 7:) among (XI, 71, yl), . . . , ( ~ n ,  rn, yn), where 
6 E (0, E) is a small constant. Let us show that each of these examples will be 
predicted with a non-multiple prediction from the other extended examples 
in the sequence (XI, 71, yl), . . . , (x,, r,, y,), from some n on. We will assume 
n large enough. 



3.5 Proofs 93 

Let (xk,rk, yk) be the extended example with the ([(E - 6/2)nJ + 1)th 
largest (in the sense of the lexicographic order) (fz(xi, T:), 1 - r,!') among all 
n-strange extended examples (xi, ri, yi), i = 1,. . . , n. (Remember that all T,!' 

are assumed to be different.) Let (xj, rj, yj) be one of the L(1 - M(E - 6))nJ 
extended examples with the largest ( f z  (xi, r,!), 1 - r,!') and let y E Y be a 
label different from &(xj, 7;). It  suffices to prove that 

(cf. (3.12) on p. 62), where all a Y  are computed as a in (3.27) (p. 75) from 
the sequence (xl, 71, yl), . . . , (xn, rn, yn) with yj replaced by y. Since a; = 

fz(xj ,  7;) and a! # ai for at most 2Kn + 1 values of i (indeed, changing yj 
will affect at most 2Kn + 1 nonconformity scores), it suffices to prove 

where b* << 6 is a positive constant. 
Since (fz(xj, T;), 1-7;) 2 (ak, 1-7:) (indeed, by Lemma 3.12, there are 

less than (E - 6/2)n n-strange extended examples among the [(I - M(E - 6))nJ 
extended examples with the largest (fz(xi, r,!), 1-r,!')), (3.61) will follow from 

If I{i : ai = a k ) l  5 i n ,  the left-hand side of (3.62) does not exceed 

so we can, and will, assume without loss of generality that 

Since r,!' for the extended examples satisfying ai = a k  are output according 
to the uniform distribution U, the expected value of r[ is about 

and so by Hoeffding's inequality and the Borel-Cantelli lemma we will have 
(from some n on) 

(remember (3.63)). Equation (3.62) will hold because its left-hand side can be 
transformed using (3.64) as 
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The assertion we have just proved means that, almost surely from some n 
on, 

Since 6 can be arbitrarily small and M is continuous (Lemma 3.7), this implies 

By Lemma 3.15 this implies, in turn, 

1 - -  
limsup - multi < M(E) a.s. , 
n+m n i,l 

which coincides with (3.22) (p. 69). 
If E 2 €0, Lemma 3.13 implies that 

lim IE(multn lFn+l) = 0 a.s. ; 
n+m 

in combination with Lemma 3.15 this again implies (3.22). 
Inequality (3.23) is treated in a similar way to (3.22). Lemmas 3.13 

and 3.14 imply that 

liminf IE(empn lFn+l) 2 E(E) a.s: 
n+m 

(3.65) 

(this inequality is vacuously true when E < E ~ ) .  Another application of 
Lemma 3.15 gives 

n 
1 

lim inf - empi 2 E(r) a.s. , 
n-im n i=l 

Remark The derivation of Proposition 3.5 from Lemmas 3.12-3.15 would be 
very simple if we defined the nonconformity measure by, say, 

( -~B(x,  ff) ,  ff)  if y = $B(x, u) 
A(B, (x, u, Y)) := 

( ( x  u), ) otherwise 

(with the lexicographic order on nonconformity scores) instead of (3.15) (in 
which case the second addend in the numerator of (3.12) would be just 7: 

almost surely). Our definition (3.15), however, is simpler and, most impor- 
tantly, facilitates the proof of Proposition 3.2. Another simplification would 
be to use Lemma 3.12 (applied to E := E - E(E)) instead of Lemma 3.14 in the 
derivation of (3.65); we preferred a more symmetric picture. 
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3.6 Bibliographical remarks 

Examples of nonconformity measures 

For a derivation of the dual problem (3.6) (p. 58), see Vapnik 1998. The objects xi 
with a+, > 0 are known as support vectors; this is the origin of the name "support 
vector machine". 

The idea of reducing binary classification to regression is an old one. In the case 
of simple prediction the procedure is as follows: encode the labels as real numbers, 
one negative and the other positive, apply a regression algorithm, and define 5, to 
be the "positive" label if the value predicted for y, by the regression algorithm is 
positive, to  be the "negative" label if the value predicted for y, by the regression 
algorithm is negative, and define 5, arbitrarily if the value predicted for y, by 
the regression algorithm is zero. Probably the earliest suggestion of this kind was 
Fisher's discriminant analysis (Fisher 1973b, 549.2): if there are, say, 11 males and 
12 females in the training set and 11 +12 = I ,  encode males as 12/1 and encode females 
as -11/1 (so that the mean of the encodings over the training set is O), and use the 
least squares algorithm as the regression algorithm. 

The precursor of conformal predictor suggested in Gammerman et  al. 1998 used 
the SVM method as the underlying algorithm. Later it was noticed (see Saunders 
et  al. 1998) that the Lagrange method applied to ridge regression in analogy with 
SVM leads to  ai equivalent to the residuals, and this in turn lead to the realization 
that almost any machine learning algorithm can be adapted, often in more than 
one way, to  obtain a nonconformity measure. However, the first genuine confor- 
mal predictor (then called "transductive confidence machine") introduced in Vovk 
et al. 1999 and Saunders et  al. 1999 still used the Lagrange multipliers ai corre- 
sponding to constraints (3.4) (p. 57) as the nonconformity measure. The original 
conformal predictors for multilabel classification problems using binary SVMs were 
based on (3.7) with X = 1, but it was quickly noticed that taking X < 1 improves 
results dramatically. 

There is a version of SVM for regression (see Vapnik 1998, Chap. l l ) ,  which can 
also be used for computing nonconformity scores. 

We mentioned two methods of reducing multilabel classification problems to  bi- 
nary ones: "one-against-the-rest" and "one-against-one". Another popular method, 
based on error-correcting coding, was proposed by Dietterich and Bakiri (1995). 

Instead of reducing a multilabel classification problem to  the binary case and 
then applying the SVM method, it is possible to use directly known multilabel 
generalizations of SVM. First such generalization was proposed by Blanz and Vapnik 
(Vapnik 1998, §10.10); later but independently it was found by Watkins and Weston 
(1999) and Jaakkola. 

Universal predictor 

The first step towards a universal predictor was done in Vovk 2002a, where it was 
shown that an optimal smoothed conformal predictor exists when the power dis- 
tribution Qm generating the examples is known. The full result was announced in 
Vovk 2003a. 
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Alternative protocols 

Several papers (such as Rivest and Sloan 1988, Freund et al. 2004) extend the stan- 
dard PAC framework by allowing the prediction algorithm to abstain from making 
a prediction a t  some trials. Our results show that for any significance level e there 
exists a prediction algorithm that: (a) makes a wrong prediction with frequency a t  
most E; (b) has an optimal frequency of abstentions among the prediction algorithms 
that satisfy property (a). The protocol of Rivest and Sloan (1988) and F'reund et al. 
(2004) is in fact a restriction of our protocol, in which Predictor is only allowed 
to output a one-element set or the whole of Y; the latter is interpreted as absten- 
tion. (And in the situation where Err, and Mult, are of primary interest, as in 
this chapter, the difference between these two protocols is not very significant.) The 
universal predictor can be adapted to the restricted protocol by replacing a multi- 
ple prediction with Y and replacing an empty prediction with a randomly chosen 
label. In this way we obtain a prediction algorithm in the restricted protocol which 
is asymptotically conservative and has an optimal frequency of abstentions, in the 
sense of (3.9) (p. 61), among the asymptotically conservative algorithms. 

The methods of Freund et al. (2004) are directly applicable to conformal predic- 
tion; in particular, that paper defines a natural nonconformity measure (the "em- 
pirical log ratio", taken with appropriate sign) in the situation where a hypothesis 
class is given. 

Confidence and credibility 

In the situation where Mult, and Emp, are the principal measures of predictive 
efficiency, it is very natural to summarize the range of possible prediction sets r ' ,  
E E (0, I), by reporting the confidence 

the credibility 
inf{e : lrel = 0) , 

and the prediction re, where 1 - E is the confidence (in this case r' is never multiple 
for conformal predictors and usually contains exactly one label). Reporting the pre- 
diction, confidence, and credibility was suggested in Vovk et al. 1999 and Saunders 
et al. 1999; it is analogous to reporting the observed level of significance (Cox and 
Hinkley 1974, p. 66) in statistics. 



Modifications of conformal predictors 

So far we have emphasized desirable properties of conformal predictors: va- 
lidity (Chap. 2), asymptotic efficiency (Chap. 3), and flexibility (ability to 
incorporate a wide range of machine-learning methods); we have also men- 
tioned that the hedged predictions output by good conformal predictors are 
"conditional", in the sense that they take full account of the object to be pre- 
dicted. In this chapter we will discuss some limitations of conformal prediction 
and ways to overcome or alleviate these limitations. 

The first problem, dealt with in 54.1, is the relative computational in- 
efficiency of conformal predictors. In that section we construct "inductive 
conformal predictors" (ICP), whose computational efficiency is often much 
better; the price is some loss in predictive efficiency (which was called sim- 
ply "efficiency" in the previous chapters). In $4.2 we introduce several new 
nonconformity measures, which are especially natural when used with ICP. 

"Weak teachers", which are allowed to provide the true label with a delay 
or not to provide it at all, are considered in 54.3. We introduce a formal notion 
of a "teaching schedule", which is a fairly general protocol for disclosing labels 
of observed objects including several interesting special cases. The main result 
of that section is a characterization of teaching schedules under which the 
method of conformal prediction remains "asymptotically valid in probability". 

The protocol with a weak teacher is a relaxation of the pure on-line proto- 
col in the direction of the off-line setting. After showing in 54.3 that conformal 
predictors retain some properties of validity in the mixed protocol, in 54.4 we 
discuss simple validity properties of off-line conformal predictors and inductive 
conformal predictors, and also briefly consider a mixed protocol for inductive 
conformal predictors. 

The issue of conditionality is taken up in 54.5. The potentially serious 
problem with conformal predictors is that they are not automatically condz- 
tionally valid: e.g., in the USPS data set some digits (such as "5") are more 
difficult to recognize correctly than other digits (such as "O"), and it is natural 
to expect that at the confidence level 95% the error rate will be significantly 
greater than 5% for the difficult digits; our usual, unconditional, notion of 
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validity only ensures that the average error rate over all digits will be close 
to 5%. The notion of Mondrian conformal predictor is introduced to address 
this concern. 

4.1 Inductive conformal predictors 

We start by looking more closely at  the reasons for the relative computational 
inefficiency of conformal predictors for large data sets. For concreteness, we 
will discuss the conformal predictors determined by the simplest nonconfor- 
mity measures (2.23) and (2.24) (p. 29), but the phenomenon is general. (The 
notion of ICP itself will be closer to conformal predictors determined by (2.24), 
in that ICPs never use the value of a prediction rule on examples from which 
the rule was found.) 

As discussed in Chap. 1, one can usually assign a simple predictor to one of 
two types: "inductive" or "transductive". For inductive predictors, DIZ1,...,zn~ 
can be computed, in some sense: e.g., DIZl,...,Zn~ may be described by a poly- 
nomial, and computing Dlzl ,...,=,J may mean computing the coefficients of the 
polynomial; as soon as Dl= =,,J is computed, computing Dlz1 ,..., z n ~ ( x )  for 
a new object x takes very little time. For transductive predictors, relatively 
little can be done before seeing the new object x; even allowing considerable 
time for pre-processing 2 .~1, .  . . , z,J, computing Dlzl,...,tn~(x) will be a difficult 
task. 

Notice that, even when D is an inductive algorithm, the confidence pre- 
dictor based on the generic nonconformity measure (2.23) (and, even more so, 
on (2.24)) will still be computationally inefficient: for every new object x,, 
computing P ( x l ,  yl, . . . , x,-1, y,-1, x,) will require constructing new predic- 
tion rules. Inductive conformal predictors will be defined in such a way that 
they can make significant computational savings when the underlying simple 
predictor D is inductive. 

To define an ICP from a nonconformity measure (A,) first fix a finite or 
infinite sequence of positive integer parameters ml,  ma,. . . (called update tri- 
als); it is required that ml < m2 < . . . . If the sequence ml,  m2,. . . is finite, 
(ml, m2,. . .) = (ml,. . . , m,), we set mi := oo for i > r. The ICP determined 
by (A,) and the sequence ml,  mn, . . . of update trials is defined to be the con- 
fidence predictor r such that the prediction sets r'(x1, y ~ ,  . . . , x,-1, y,-~, x,) 
are computed as follows: 

if n 5 ml, r e (x l ,  y1,. . . ,%,-I, y,-l, x,) is found using a fixed conformal 
predictor; 

0 otherwise, find the k such that mk < n 5 mk+l and set 
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where the nonconformity scores aj are defined by 

Smoothed ICPs can be defined analogously to smoothed conformal predic- 
tors: instead of (4.1) we have 

where j = mk +1, . . . , n and rn E [O,1] are the random numbers. The following 
result (which is also a special case of Theorem 8.1 on p. 193) shows that 
Propositions 2.3 and 2.4 continue to hold in the case of ICPs and smoothed 
ICPs, respectively. 

Proposition 4.1. All ICPs are conservatively valid. All smoothed ICPs are 
exactly valid. 

The general scheme for defining nonconformity 

For use with inductive confidence predictors, it is convenient to rewrite the 
definitions (2.23) and (2.24) more explicitly as 

and 

respectively. In the case where A is defined by (4.5), we can see that the ICP 
requires recomputing the prediction rule being used not at every trial but 
only at the update trials ml,  ms, . . . ; the rate of growth of mi determines the 
chosen balance between predictive and computational efficiency. The simplest 
nontrivial case, where there is only one update trial ml,  is discussed in $4.4 
below. 

Let a and b be positive numbers such that either a > 1 and b 2 1 or 
a > 1, and suppose that the prediction rule D1,,,...,,,,~ is computable in time 
O(na logb n) and the discrepancy measure A is computable in constant time. 
Then the conformal predictor determined by (4.5) spends time O(na+l logb n) 
on the computations needed for the first n trials. On the other hand, if the 
sequence mi is infinite and grows exponentially fast, the ICP based on D, A, 
and (mi) spends the same, to within a constant factor, time O(na logb n). (We 
have been assuming that the conformal predictor and ICP are given D as an 
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oracle and that the label space Y is finite and fixed.) In the case where the 
sequence mi is finite, the ICP's computation time becomes 

O (n log n) (4.6) 

(e.g., use red-black trees for storing the nonconformity scores, as in the proof 
of Proposition 3.2 on p. 75, but augment them with information needed to 
find the rank of an element in time O(1ogn) - see Cormen et al. 2001, 514.1). 

4.2 Further ways of computing nonconformity scores 

All nonconformity measures described in the previous chapters can be used 
in inductive conformal prediction, and all nonconformity measures that will 
be introduced in this section can be used in conformal prediction. The non- 
conformity measures of this section are, however, especially convenient in the 
case of ICPs. 

Suppose we are given a bag 

and an example z E Z, fixed for the rest of this section. The problem is to 
define the nonconformity score 

which we will usually abbreviate to A(z). In the context of inductive conformal 
prediction, we are interested in 1 = ml, mn, . . . . Sometimes it will be more 
convenient to define the conformity score B(z) instead. As usual, we write 
(xi, yi) for zi and (x, y) for z when we need separate notations for the objects 
and labels. 

We start from applying two nonconformal measures introduced earlier to 
ICP. The nonconformity measure used to define the deleted LSCM, ai = Je(q I 
with the deleted residuals e(i) defined by (2.35) (p. 34), can be rewritten in 
our present context as 

where 9 is the least squares prediction for y as computed from the training 
set lzl , .  . . , zlJ and x. The nonconformity measure (2.36) used to define the 
studentized LSCM can be rewritten as 

where, in addition, X is the I x p matrix (xl, . . . , xl)'. This can be checked 
using the standard formula 
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Fig. 4.1. On-line performance of the 1-nearest neighbor ICP with the update trial 
4649 (= 9298/2) on the USPS data set for the confidence level 95%. In accordance 
with Proposition 4.1, starting from scratch at trial 4670 does not affect the error 
rate (solid line) 

where K is a square matrix and u and v are vectors. 
The definition (3.1) (p. 54) of nonconformity measures based on the nearest 

neighbors classification is already given in the form (4.8) convenient for use 
with ICP. In the case of regression (p. 38), A(x, y ) is defined as 1 y - 61, where 
6 is the Ic-NNR prediction for x computed from the bag (4.7). 

The performance of the 1-nearest neighbor ICP on the USPS data set with 
update trial 4649 (the middle of the data set) is shown in Figs. 4.1 and 4.2. 
It can be seen from these figures (and is obvious anyway) that the ICP's 
performance (measured by the number of multiple predictions) deteriorates 
sharply after update trials mi. (There is a hike of approximately 1 / ~  in the 
number of multiple predictions, where E is the significance level used.) Perhaps 
in practice there should be short spells of "learning" after each update trial, 
when the ICP is provided with fresh "training examples" and its predictions 
are not used or evaluated. 

It is not clear how the way of computing nonconformity scores from SVM, 
as given in §3.1, could be used by ICP in a computationally efficient way. The 
easiest solution is perhaps to compute the SVM prediction rule based on the 
bag (4.7) and define A(x, y) to be the distance (perhaps in a feature space) 
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errors 

examples 

Fig. 4.2. On-line performance of the 1-nearest neighbor ICP with the update trial 
4649 on the USPS data set for the confidence level 99% 

between x and the optimal separating hyperplane (taken with the minus sign 
if the SVM prediction for x is different from y). 

In the rest of this section we will describe new ways of detecting non- 
conformity which are especially natural in the case of inductive conformal 
prediction. 

De-Bayesing 

Suppose we have a Bayesian model (compatible with the randomness assump- 
tion) for the process of generating the label y given the object x. If we fully 
trust the model, we can use it for computing, e.g., predictive densities and 
prediction sets in the form of highest probability density regions (see, e.g., 
Bernardo and Smith 1994,§5.1). We are, however, interested in the case where 
the Bayesian model is plausible, but we do not really believe it. If it happens 
to be true, we would like our confidence predictor to be efficient. But we also 
want it to be always valid, even if the Bayesian model is wrong. 

A natural definition of nonconformity measure (4.8) is as follows: find 
the posterior (after seeing the old examples 21, . . . , q and the new object x) 
conditional distribution p for the label y given x, and define the conformity 
score for (x, y) as 

B (221,. . . , aJ, (3, Y)) := P{Y) (4.12) 

in the case of classification (Y is finite) and 



4.2 Further ways of computing nonconformity scores 103 

in the case of regression (Y = R). In both cases, B(x, y) is small when the 
label is strange under the Bayesian model, so the corresponding ICP is likely 
to be predictively efficient. The conditional probability distribution for the 
next example z given 21,. . . , zl can be computed before seeing x, which may 
lead to a computationally efficient ICP. And of course, the ICP will be valid 
automatically. 

The ICP determined by one of these conformity measures may be said 
to be the result of "de-Bayesing" of the original Bayesian algorithm. More 
generally, we can also say that the RRCM algorithm of 82.3 is a de-Bayesed 
version of ridge regression (it is well known, and demonstrated in Chap. 10, 
that ridge regression is the Bayesian algorithm for a normal prior). 

Bootstrap 

The basic idea of bootstrap is to use resampling (sampling from the sample, 
obtaining what is called bootstrap samples) to get an idea of the variability of 
the value of interest (for details, see Efron and Tibshirani 1993, Davison and 
Hinkley 1997). Let us again consider the case of regression. 

One way to implement this idea is as follows. Find the least squares weights 
4 := (X'X)-lX'Y from the training set (4.7), where X is the 1 x p matrix 
(XI,. . . , xl)' of the objects in the training set (assuming the object space is 
X = Rp) and Y is the corresponding 1 x 1 vector of the labels in the training 
set. Let G be the uniform distribution on the centered modified residuals ri -P, 
where 

(cf. (2.36) on p. 34), and 
1 

(That is, G puts the same weight 111 on each ri.) Let J,*, r = 1,2,. . . , be a 
sequence of independent random vectors in ~ b h o s e  components are inde- 
pendent and distributed as G. Obtain R M  (where R should be large enough 
and M = 1 is acceptable) "prediction errors" 6:,, in the following way: 

FOR r = 1,.  .., R: 
Y: := Xw + J,*; 
4: := (X'X)-lX'Y: (least squares estimate from X and Y:); 
F O R m =  1, ..., M: 

sample E; from G; 
d:,, := ( ~ . X + € & ) - & : - X  

END FOR 
END FOR. 
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From the prediction errors for the new object x we can compute the corre- 
sponding conformity score for the full example (x, y) as, e.g., 

where Q := 3 - x. 

Decision trees 

A decision tree (for a detailed description see, e.g., Mitchell 1997, Chap. 3) is a 
way of classifying the objects into a finite number of classes. The classification 
is performed by testing the values of different attributes, but the details will 
not be important for us. 

There are many methods of constructing a decision tree from a training 
set of examples. One of the most popular methods is Quinlan7s (1993) C4.5, 
but again we do not need the precise details. We will assume that each class 
contains at least one object from the training set: if this is not the case, the 
decision tree can always be "pruned" to make sure this property holds. 

After a decision tree is constructed from the training set, we can define 
a conformity score B(x, y) of the new example (x, y) as the percentage of 
examples labeled as y among the training examples whose objects are classified 
in the same way as x by the decision tree. 

Boosting 

Boosting is, as its name suggests, a method for improving the performance 
of a given prediction algorithm, usually called the weak learner1. As usual in 
the boosting literature, we will assume that the weak learner can be applied. 
to the training set (4.7) in which each example zi, i = 1,. . . , I ,  is taken with 
a nonnegative weight wi, with the weights summing to 1. If a weak learner 
cannot process weighted examples, a bag of training examples of the same size 
1 should be sampled from the probability distribution D{xi) := wi, and this 
bag is then used to train the weak learner. The output of the weak learner is 
a prediction rule h : X 4 Y. 

Let us assume, for simplicity, that Y = {-1,l). One of the most popular 
boosting algorithms, AdaBoost.Ml, works as follows: 

start with the probability distribution Dl{i) := l l m ,  i = 1,. . . , m; 
F O R t = l ,  ..., T: 

call the weak learner providing it with Dt; 
get back the prediction rule ht : X 4 Y;  
compute the error ~t := Ci=l  ,..., l:ht(z.)Zyi Dt{i); 
at := $ ln 2; 

 here is no connection between weak learners and our "weak teachers" consid- 
ered in the next section. 
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update Dt+l{i) := ~ ~ { i ) e - ~ ~ y ~ ~ ~ ( ~ ~ ) / ~ ~ ,  i = 1,. . . , I ,  
where Zt is the normalizing constant 

END FOR. 

The normalizing constant Zt is chosen to make Dt+l a probability distribution. 
The result of the boosting procedure is the function f : X -+ R defined by 

T 

f (x) := Ct=1 "tht (XI 
T 

Ct=1 "t 

The prediction for a new object x is computed as 6 := sign f (x). It can also 
be used to define the conformity score 

for an example (x, y). This is a natural measure from the theoretical point of 
view (Schapire et al. 1998, Theorem 5) and gives reasonable empirical results 
on benchmark data sets (Proedrou 2003). 

Another natural way to define the conformity score of an example (x, y) 
is to use a conformity measure for the weak learner. Suppose, e.g., that the 
weak learner is a method for constructing decision trees. Then we can define 
the conformity score of (x, y) as 

where Bt(x, y) is the conformity score of (x, y) computed from ht, as de- 
scribed in the previous subsection. No significant difference in the empirical 
performance of (4.14) and (4.15) was found in Proedrou 2003. 

Neural networks 

Let IYI < m (neural networks are usually used for classification). When fed 
with an object x E X, a neural network outputs a set of numbers o,, y E Y, 
such that o, reflects the likelihood that y is x's label. (See Mitchell 1997 for 
details.) Inductive conformal predictors determined by nonconformity scores 

where y > 0 is a suitably chosen parameter, have been shown to have a 
reasonable empirical performance (Papadopoulos 2004). Results change little 
if the in (4.16) is replaced by max. 



106 4 Modifications of conformal predictors 

Logistic regression 

The logistic regression model is only applicable in the case Y = {0,1) and 
X = RP, for some p; according to this model, the conditional probability that 
y = 1 given x for an example (x, y) is given by 

ew.x 

1 + ew'x 
for some weight vector w E RP. If 8 is, e.g., the maximum likelihood estimate 
found from the bag (4.7), it is natural to use the nonconformity measure 

(i.e., l/A(x, y) is the estimated probability of the observed y given the ob- 
served x for the current example). 

Remembering that nonconformity scores can be subjected to a monotonic 
transformation without changing the prediction sets, we can simplify (4.17) 

4.3 Weak teachers 

In the pure on-line setting, considered so far, we get an immediate feedback 
(the true label) for every example that we predict. This makes practical ap- 
plications of this scenario questionable. Imagine, for example, a mail sorting 
center using an on-line prediction algorithm for zip code recognition; suppose 
the feedback about the "true" label comes from a human expert. If the feed- 
back is given for every object xi, there is no point in having the prediction 
algorithm: we can just as well use the label provided by the expert. It would 
help if the prediction algorithm could still work well, in particular be valid, if 
only every, say, tenth object were classified by a human expert. Alternatively, 
even if the prediction algorithm requires the knowledge of all labels, it might 
still be useful if the labels were allowed to be given not immediately but with 
a delay (in our mail sorting example, such a delay might make sure that we 
hear from local post offices about any mistakes made before giving a feedback 
to the algorithm). In this section we will see that asymptotic validity still 
holds in many cases where missing labels and delays are allowed. 

In the pure on-line protocol we had validity in the strongest possible sense: 
at each significance level E each smoothed conformal predictor made errors in- 
dependently with probability E .  Now we will not have validity in this strongest 
sense, and so we will consider three natural asymptotic definitions, requiring 
only that Err; /n -+ E in a certain sense: weak validity, strong validity, and 
validity in the sense of the law of the iterated logarithm. Finally, we will prove 
a simple result about asymptotic efficiency. 
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Imperfectly taught predictors 

We are interested in the protocol where the predictor receives the true labels 
yn only for a subset of trials n, and even for this subset, yn may be given with 
a delay. This is formalized by a function L : N + N defined on an infinite set 
N C N and required to satisfy 

for all m E N and n E N; a function satisfying these properties will be 
called a teaching schedule. A teaching schedule L describes the way the data 
is disclosed to the predictor: at the end of trial n E N it is given the label 
y,-(,) for the object XL(,). The elements of L's domain N in the increasing 
order will be denoted ni: N = {nl,nz,. . . )  and nl  < n2 < ..a. We denote 
the total number of labels disclosed by the beginning of trial n to a predictor 
taught according to the teaching schedule L by s(n) := I{i : i E N, i < n)l. 

Let I' be a confidence predictor and L be a teaching schedule. The L-taught 
version rL  of r is 

Intuitively, at the end of trial n the predictor rL  learns the label y,-(,) if n E N 
and learns nothing otherwise. An L-taught (smoothed) conformal predictor is 
a confidence predictor that can be represented as rL for some (smoothed) 
conformal predictor r .  

Let us now consider several examples of teaching schedules. 

Ideal teacher. If N = N and L(n) = n for each n E N,  then rL = r .  
Slow teacher with a fixed lag. If N = (1 + 1,1+ 2,. . . ) for some 1 E N 

and L(n) = n - 1 for all n E N, then re is a predictor which learns true 
labels with a delay of 1. 

Slow teacher. The previous example can be generalized as follows. Let 
1(n) = n + lag(n) where lag : N + N is an increasing function. Define 
N := l(N) and L(n) := 1-'(n), n E N. Then rL is a predictor which 
learns the true label for each object xn with a delay of lag(n). 

Lazy teacher. If N # N and L(n) = n, n E N,  then rL is given the true 
labels immediately but not for every object. 

All results of this section (as will be clear from the proofs, given in 54.6) 
use only the following properties of smoothed conformal predictors r :  

At each significance level E ,  the errors errk(I'), n = 1,2, . . . , are indepen- 
dent Bernoulli random variables with parameter E .  
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0 The predictions do not depend on the order of the examples learnt so far: 

for any permutation n of (1,. . . , n-  1). (Remember that we call confidence 
predictors satisfying this property invariant.) 

Weak validity 

In this subsection we state a necessary and sufficient condition for a teaching 
schedule to preserve "weak asymptotic validity" of conformal predictors. The 
condition turns out to be rather weak: feedback should be given at  more than 
a logarithmic fraction of trials. 

We start from the definitions, assuming, for simplicity, randomness rather 
than exchangeability. A randomized confidence predictor I' is asymptotically 
exact in probability if, for all significance levels E and all probability distribu- 
tions Q on Z, 

1 
- x Err: ( r ,  Qm) - r -+ 0 

i=l 

in probability. Similarly, a confidence predictor r is asymptotically conserva- 
tive i n  probability if, for all significance levels E and all probability distributions 
Q on Z, 

in probability. 

Theorem 4.2. Let L be a teaching schedule with domain N = {nl, n2,. . . ), 
where nl ,  n2, . . . i s  a strictly increasing infinite sequence of positive integers. 

If limk+m(nk/nk-l) = 1, any L-taught smoothed conformal predictor i s  
asymptotically exact in probability. 
If limk+m(nk/nk-l) = 1 does not hold, there exists an  L-taught smoothed 
conformal predictor which is not asymptotically exact in probability. 

In words, this theorem asserts that an L-taught smoothed conformal predictor 
is guaranteed to be asymptotically exact in probability if and only if the 
growth rate of nk is sub-exponential. 

Corollary 4.3. If limk,,(nk/nk-1) = 1, any L-taught conformal predictor 
is asymptotically conservative i n  probability. 
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Strong validity 

Theorem 4.4. Suppose the example space Z is Borel. Let I' be a smoothed 
conformal predictor and L be a teaching schedule whose domain is  N = 
{ n l , n 2 ,  ...), wherenl  < n2 <. . - .  If 

then F" is asymptotically exact. 

This theorem shows that r" is asymptotically exact when nr, grows as 
exp(&/lnk); on the other hand, it does not guarantee that it is asymp- 
totically exact if n k  grows as exp(&). 

Corollary 4.5. Let r be a conformal predictor and L be a teaching schedule 
with domain N = { n l ,  n2,. . . ), nl < n2 < . a .  Under condition (4.18), rL 
i s  an  asymptotically conservative confidence predictor. 

Iterated logarithm validity 

The following result asserts, in particular, that when n k  are equally spaced a 
stronger version of asymptotic validity, in the spirit of the law of the iterated 
logarithm, holds. 

Theorem 4.6. Suppose the domain { n l ,  n2,. . . ), nl < n2 < . a * ,  of a teach- 
ing schedule satisfies n k  = O(k). Each L-taught smoothed conformal predictor 
rL satisfies 

Err; (FL, QW ) 

and each L-taught conformal predictor rL satisfies 

for each Q E P(Z) at each significance level 6 .  

Efficiency 

We will only consider the case of classification, taking the number of multiple 
predictions as the primary measure of inefficiency. 

If r is a confidence predictor and a significance level, we set 

Mult; ( r )  , lim sup 
n n+oo n 
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The intervals U'(r) characterize the asymptotical efficiency of r ;  of course, 
these are random intervals, since they depend on the actual examples output 
by Reality. It turns out, however, that in the most important case (covering 
conformal predictors and L-taught conformal predictors, smoothed and deter- 
ministic) these intervals are close to being deterministic under the assumption 
of randomness. 

Lemma 4.7. For each invariant confidence predictor r (randomized or deter- 
ministic), signijkance level E ,  and probability distribution Q on  Z there exists 
an  interval [a, b] G (0,l) such that 

U'(r) = [a, b] a.s. , 

provided the examples and random numbers (if applicable) are generated from 
Qm and Um independently. 

Proof. The statement of this lemma is an immediate consequence of the 
Hewitt-Savage zero-one law (see, e.g., Shiryaev 1996, Theorem IV.1.3). 0 

We will use the notation U6(r, Q) for the interval whose existence is asserted 
in the lemma; it characterizes the asymptotical efficiency of r at significance 
level E with examples distributed according to Q. 

Theorem 4.8. Let r be a (smoothed) conformal predictor and L be a teaching 
schedule defined on  N = { n l ,  n z ,  . . . ), where nl < nz < . . . is an  increasing 
sequence. If, for some c E N, n k + l  - n k  = c from some k on, then u~(I ' .~ ,  Q) = 
UE(r ,  Q) for all significance levels E E (0,l) and all probability distributions 
Q on  Z .  

Theorems 4.4 and 4.8 can be illustrated with the following simple example. 
Suppose only every mth label is revealed to a conformal predictor, and even 
this is done with a delay of 1, where m and 1 are positive integer constants. 
Then (smoothed) conformal predictors will remain asymptotically valid, and 
their asymptotic rate of multiple predictions will not deteriorate. 

4.4 Off-line conformal predictors and semi-off-line ICPs 

As we discuss in this section, conformal predictors and ICPs can be applied 
in the pure off-line mode, but we will then only have a weakened guarantee 
of validity. The notion of ICP, however, has a natural "semi-off-line" version, 
which is exactly valid. This section's discussion is independent of the previous 
section's results (except for a short remark at the end), but it will be clear 
that they can be fruitfully combined. 

Suppose we are given a training set z l ,  . . . , zl of examples zi = (xi, yi) and 
the problem is to predict the labels yi, i = 1 + 1 , .  . . , 1 +  k ,  of the working ex- 
amples zl+l, . . . , zl+k. The off-line conformal predictor outputs the prediction 
sets 
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for each working example zi, i = 1 + 1,. . . , I  + k, where the nonconformity 
scores are computed from a nonconformity measure A: 

(cf. (2.18) and (2.19) on p. 26). 
In a similar way we can define of-line ICPs. For concreteness, we restrict 

ourselves to the nonconformity measures (4.5) (p. 99). The training set is first 
split into two parts: the proper training set 

of size m < 1 and the calibration set 

of size 1 - m. For every working object xi, i = 1 + 1,. . . , I  + k, compute the 
prediction sets 

where the nonconformity scores are defined by 

(Cf. (4.1)-(4.2), p. 99, and (4.5) .) 
For both conformal predictors and ICPs, it is true that 

for every i = 1 + 1,. . . ,1+ k, provided all examples are drawn independently 
from the distribution Q, but the events in (4.25) are not independent and 

can be significantly above E even when k is very large. (Cf. the description of 
the "inductivist objection" in s10.2.) 

To ensure validity of the off-line ICP, we can modify the application of 
the ICP constructed from the training set to the working set: after processing 
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each working example (xi, yi), i = 1 + 1, .  . . , 1 +  k, the corresponding noncon- 
formity score ai should be added to the pool of nonconformity scores used in 
generating the prediction sets for the following working examples. Formally, 
redefine 

where the nonconformity scores are defined by 

Proposition 4.1 (p. 99) says that this modification is conservatively valid, and 
so (4.26) will not exceed E, up to statistical fluctuations. 

Notice that in the case k << (I - m) the semi-off-line ICP (4.27) differs 
so little from the off-line ICP that the latter can be expected to be "nearly 
conservative". 

Let us give a formal definition. A confidence predictor T is (6,)- 
conservative, where &, d2, . . . is a sequence of nonnegative numbers, if for 
any exchangeable probability distribution P on Zm there exists a probability 
space with two families 

( t $ ) : ~ ~ ( o , l ) , n = 1 , 2  ,... ), ( r 7 $ ) : ~ ~ ( 0 , 1 ) , n = 1 , 2  ,...) 

of (0, 1)-valued random variables such that: 

0 for a fixed E, cf), <:I,. . . is a sequence of independent Bernoulli random 
variables with parameter E ;  

0 for all n and E, rl$-6n) < J$); 
0 the joint distribution of errh(T, P), E E (0, I) ,  n = 1,2, .  . . , coincides with 

the joint distribution of r7$), E E (0, I), n = 1,2,. . . . 
The definition of conservative validity is a special case corresponding to 6, = 
0, n = 1,2,. . . ; we are now interested in the case where bn are small (at least 
for a range of n) positive numbers. 

Proposition 4.9. The confidence predictor 

where r E ( x l ,  yl, . . . , xl, yl, xi) is defined by (4.23), is (&)-conservative, where 

di := 1-m i f i > l  {r otherwise. 
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Proof. Let I't be the smoothed semi-off-line ICP corresponding to r, and let 
i > 1. Define 6 and vi by the requirements that cj') = 1 if and only if rt 
makes a mistake when fed with XI,  yl, . . . , xi, yi, and d') = 1 if and only if 
r makes a mistake when fed with X I ,  yl, . . . , xl, yl, xi, yi, at  the significance 
level E. To ensure I ~ , ( ' - ~ "  ) I:'), it is sufficient to require 

This proof shows that the fraction of errors made by the off-line ICP at  a 
significance level E on the working set does not exceed E + k/(l - m), up to 
statistical fluctuations. 

ICPs applied in both off-line and semi-off-line modes are computation- 
ally quite efficient. Let us see what the computation time will be if standard 
algorithms for standard computation tasks are used. In the case of simple pre- 
dictions, the application of the inductive algorithm D found from the training 
set of size 1 to the working set of size k requires time 

where Ttrai, is the time required for computing the prediction rule D1,,,...,,,~ 
and Tap,] is the time needed to apply this prediction rule to a new object. 
The off-line ICP (see (4.23) and (4.24)) requires time 

Q (T:rain + (1 - m + k)~:,,, + (1 - m) log@ - m) + k log(1- m)) , 

where TL,, is the time required for computing the prediction rule Dlrl,...,,,,~ 
and T:,,, is the time needed to apply this prediction rule to a new object 
(we assume that computing A is fast); we allow time (1 - m) log(1 - m) for 
sorting the nonconformity scores obtained from the calibration set (Cormen 
et al. 2001, Part 11) and time log(1 - m) for finding the rank of a working 
nonconformity score in the set of the calibration nonconformity scores (Cor- 
men et al. 2001, Chaps. 12 and 13). In the case of semi-off-line ICP ((4.27), 
(4.28)), the required time increases only slightly (for moderately large k) to 

Q (TJrain + (1 - m + k)~:,,, + (1 - m) log(1 - m) + k log(1 - m + k)) . 

As k + oo, we have the same asymptotic computation time, Q(k log k), as in 
54.1 (cf. (4.6) on p. 100). If, however, our goal is only asymptotic conserva- 
tiveness as k -+ oo, by Theorem 4.4 we can keep only a fraction of (In k)3 of 
the nonconformity scores ai, 1 < i 5 1 + k, and so the asymptotic computation 
time will become Q(k log log k). 



114 4 Modifications of conformal predictors 

4.5 Mondrian conformal predictors 

Our starting point in this section is a natural division of examples into sev- 
eral categories: e.g., different categories can correspond to different labels, or 
kinds of objects, or just be determined by the ordinal number of the example. 
As we have already discussed, conformal predictors do not guarantee validity 
within categories: the fraction of errors can be much larger than the nomi- 
nal significance level for some categories, if this is compensated by a smaller 
fraction of errors for other categories. This stronger kind of validity, valid- 
ity within categories, is the main property of Mondrian conformal predictors 
(MCPs), constructed in this section. As usual, we will demonstrate validity, in 
this stronger sense, under the exchangeability assumption; this assumption, 
however, will be relaxed in Chap. 8. 

Validity within categories (or conditional validity, as we will say) is espe- 
cially relevant in the situation of asymmetric classification, where errors for 
different categories of examples have different consequences; in this case we 
cannot allow low error rates for some categories to compensate excessive error 
rates for other categories. Because of our interest in asymmetric classification, 
we will mainly use the language of conformal transducers in our exposition. 
The standard translation into the language of conformal predictors is straight- 
forward (cf. §2.5), but in the case of asymmetric classification one might prefer 
to add flexibility to this translation: instead of comparing all p-values with 
the same threshold E we might take different ES for different categories. 

At the end of this section we discuss several special cases of MCPs, includ- 
ing conformal predictors and ICPs. 

Mondrian conformal transducers 

We are given a division of the Cartesian product N x Z into categories: a 
measurable function 

K : N x Z + K  

maps each pair (n, z) (z is an example and n will be, in our applications, the 
ordinal number of this example in the data sequence zl, z2, . . . ) to its category; 
K is the measurable space (at most countable with the discrete a-algebra) of 
all categories. It is required that the elements ~ - l ( k )  of each category k E K 
form a rectangle A x B, for some A G N and B C Z. Such a function K will 
be called a Mondrian taxonomy. 

Given a Mondrian taxonomy K,  we first define "Mondrian nonconformity 
measures" and then Mondrian conformal transducers (MCTs). 

A Mondrian nonconformity measure based on K is a family of measurable 
functions (A ,  : n E N) of the type 



4.5 Mondrian conformal predictors 115 

The smoothed Mondrian conformal transducer (smoothed MCT) determined 
by the Mondrian nonconformity measure An is the randomized confidence 
transducer producing the p-values 

where i ranges over (1, . . . , n), K i  := n(i, zi), Zi := (xi, yi), and 

for i = 1,. . . , n such that ni = 6,. As usual, the definition of a Mondrian 
conformal transducer (MCT) is obtained by replacing (4.29) with 

In general, a (smoothed) MCT based on a Mondrian taxonomy 
(smoothed) MCT determined by some Mondrian nonconformity 
based on n. 

n is the 
measure 

We say that a randomized confidence transducer f is category-wise ex- 
act w.r. to  a Mondrian taxonomy n if, for all n, the conditional probability 
distribution of pn given ~ ( 1 ,  zl), pl , . . . , n(n - 1, z,-~), p,- l ,  n(n, z,) is uni- 
form on [0, 11, where zl, 22, . . . are examples generated from an exchangeable 
distribution on Zm and pl, p2,. . . are the p-values output by f .  

Proposition 4.10. Any smoothed MCT based on a Mondrian taxonomy n is 
categoy-wise exact w.r. to K .  

This proposition generalizes Proposition 4.1 but is a special case of Theo- 
rem 8.2 (the finitary version of Theorem 8.1) on p. 193. It implies the category- 
wise property of conservative validity for MCT, whose p-values are always 
bounded above by the p-values from the corresponding smoothed MCT. 

Using Mondrian conformal transducers for prediction 

An example of asymmetric classification is distinguishing between useful mes- 
sages and spam in the problem of e-mail filtering: classifying a useful message 
as spam is a more serious error than vice versa. In this case we might want to 
have different significance levels ~k for different categories k. 

Let f be a (smoothed) MCT. Given a set of significance levels e k ,  k E K, 
we can define the prediction set for the label yn of a new object x, given old 
examples zl, . . . , 2,- 1 as 
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Fig. 4.3. A random Mondrian taxonomy (after Piet Mondrian, 1918) 

Proposition 4.10 now implies that the long-run frequency of errors made by 
this predictor (Mondrian conformal predictor, or MCP) on examples of cate- 
gory k does not exceed (approaches, in the case of smoothed transducer) ~ k ,  

for each k. 
As in the case of conformal prediction, in applications it is usually not 

wise to fix thresholds t k ,  k E K, in advance. One possibility would be 
to suitably choose three sets of significance levels (ti), (E:), and (t;) such 
that ti 5 E: 5 E; for all k E K, and say that P 1 ( z l , .  . . ,z,-l,x,,) is a 
highly confident prediction, P 2 ( z 1 , .  . . , zn-l, x,) is a confident prediction, 
and F3 (zl, . . . , ~ ~ - 1 ,  x,) is a casual prediction. 

Generality of Mondrian taxonomies 

We will next consider several classes of MCTs, involving different taxonomies. 
In this subsection we consider a natural partial order on the taxonomies, 
which will clarify the relation between different special cases. (We will use the 
expression "more general than" for this partial order; it might seem strange 
here but will be explained in $8.4.) There are many ways to split the rectangle 
N x Z into smaller rectangles (cf. Fig. 4.3), and it is clearly desirable to impose 
some order. 

We say that a Mondrian taxonomy ~1 is more general than another Mon- 
drian taxonomy 6% if, for all pairs (n', z') and (n", z"), 
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Fig. 4.4. Mondrian taxonomy corresponding to conformal transducers 

We will say that ~1 and ~2 are equivalent if each of them is more general than 
the other, and we will sometimes identify equivalent Mondrian taxonomies. 
Identifying equivalent Mondrian taxonomies means that we are only interested 
in the equivalence relation a given Mondrian taxonomy K induces ((n', z') and 
(n", z") are K-equivalent if ~ ( n ' ,  z') = ~ ( n " ,  z")) and not in the chosen labels 
~ ( n ,  z) for the equivalence classes. 

Since we are only interested in taxonomies with a t  most countable number 
of categories, the following proposition immediately follows from the standard 
properties of conditional expectations (see property 2 on p. 280). 

Proposition 4.11. Let a taxonomy ~1 be more general than a taxonomy 
If a randomized confidence transducer is category-wise exact w.r. to K I ,  it is 
category-wise exact w.r. to ~ 2 .  

Conformal transducers 

Conformal transducers are MCTs based on the least general (i.e., constant, see 
Fig. 4.4) Mondrian taxonomy. Proposition 2.4 (p. 27), asserting that smoothed 
conformal predictors are exact, is a special case of Proposition 4.10. 

In the rest of this section we will describe several experimental results for 
the USPS data set (randomly permuted), using the 1-nearest neighbor ra- 
tio (3.1) (p. 54) as the nonconformity measure. We start from results demon- 
strating the lack of conditional validity for conformal predictors. The USPS 
data set is reasonably balanced in the proportion of examples labeled by dif- 
ferent digits; for less well-balanced data sets the lack conditional validity of 
non-Mondrian conformal predictors is often even more pronounced. 

Figure 4.5 (plotting Err,, en, Mult,, and Emp, against n for the confi- 
dence level 95%; the plots for Err,, Mult,, and Emp, are almost indistin- 
guishable from the analogous plots for the deterministic conformal predictor) 
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Fig. 4.5. The performance of the smoothed conformal predictor on the USPS data 
set at  the 95% confidence level 
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shows that the smoothed conformal predictor is valid "on average" on the 
USPS data set. 

Figure 4.6 gives similar plots, but only taking into account the predictions 
made for the examples labeled "5". It shows that the smoothed conformal 
predictor is not valid at the 95% confidence level on those examples, giving 
11.7% of errors. Since the error rate of 5% is achieved on average, the error 
rate for some digits is better than 5%; for example, it is below 1% for the 
examples labeled "0". 

10000 

Inductive conformal transducers 

examples 

Inductive conformal transducers, which output the p-values 

(deterministic case) or 

(smoothed case), where 
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- errors 
. . . expected errors 
- - multiple predictions 
- - empty predictions 

Fig. 4.6. The performance of the smoothed conformal predictor on the USPS data 
set for the examples labeled "5" at  the 95% confidence level 

Fig. 4.7. Mondrian taxonomy corresponding to  inductive conformal transducers 

(cf. (4.2) and (4.3), p. 99), are also a special case of MCTs. The corresponding 
taxonomy is shown in Fig. 4.7. The result of 54.1 that ICPs are valid is a special 
case of Proposition 4.10. Similarly to  conformal predictors, ICPs sometimes 
violate the property of label-wise validity. 
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Fig. 4.8. Label-conditional Mondrian taxonomy 

Label-conditional Mondr ian  conformal t ransducers  

An important special case is where the category of an example is determined 
by its label. The corresponding taxonomy is shown in Fig. 4.8, where it is 
assumed that Y = {y(l),  . . . , y(L)). 

Our experiments will be restricted to the "symmetric" case, where the 
same significance level (5%) is used for all categories. Figure 4.9 demonstrates 
empirically the category-wise validity of MCPs. In contrast to Fig. 4.6, the 
label-conditional MCP gives 5.3% of errors when the significance level is set 
to 5% for the label "5". Figures 4.6 and 4.9 show that the correction in the 
number of errors results in an increased frequency of multiple predictions; 
there is also a decrease in the number of empty predictions. 

Attribute-conditional Mondr ian  conformal t ransducers  

The conditionality principle (Cox 1958b; Cox and Hinkley 1974, $2.3) is of- 
ten illustrated using the following simple example (slightly modified) due to 
Cox (195813). Suppose we have two instruments for measuring an unknown 
bit; at  each trial one instrument is used once, and the instrument to use is 
chosen at random (tossing a fair coin). Instrument 1 is more accurate, with 
the probability of mistake equal to l%,  whereas the probability of mistake for 
instrument 2 is 5%. Formally, each object is a pair x = ( i ,  b), where i E {1,2) 
is the instrument used and b E { O , 1 )  is the result of the measurement; the 
label y E { O , l )  is the true bit. 

It  is intuitively clear that a t  confidence level 99.5% the optimal valid con- 
fidence predictor (cf. the description of the Bayes confidence predictor in $3.4) 
will predict objects (1,.  . . ) with singular predictions and will not predict ob- 
jects (2, .  . . ) a t  all (in the sense that its predictions will be the set {0,1) of 



4.5 Mondrian conformal predictors 121 

Fig. 4.9. The performance of the label-conditional MCP (based on the taxonomy 
h(n, (z, y)) = y) on the USPS data set for the examples labeled as "5" at the 95% 
confidence level 

all labels). At confidence level 97% the optimal valid confidence predictor will 
asymptotically predict all objects with singular predictions. 

In both cases conditional validity is problematic (as argued by Cox); it 
does not prevent, however, the predictions from being valid on average. But 
the situation becomes even worse if we want to have two different significance 
levels for objects (1,. . .) and (2,. . .): if we take 0.5% for (1,. . . ) and 3% 
for (2, .  . . ), any validity is lost. 

The taxonomy for Cox's example is shown in Fig. 4.10, where "Instru- 
ment 1" stands for the set of examples ((1,. . .), . . . )  and "Instrument 2" 
stands for the set of examples ((2,. . . ), . . . ). 

In our experiments with different data sets we have not seen as gross 
failures in the conformal predictor's attribute-wise validity as those in the 
label-wise validity. The USPS data set does not have any natural attributes 
to condition on, since all attributes in it are of the same nature (the brightness 
level of a pixel) and continuous, but even for the data sets that do have natural 
attributes to condition on the conformal predictor's conditional performance 
was reasonable. 



122 4 Modifications of conformal predictors 

Instrument 1 1 
Fig. 4.10. Cox's example 

Fig. 4.11. Slow teacher 

Slow teacher 

It is interesting that MCPs can be used to deal with the problem of slow 
teacher considered in $4.3 above. The delay 1 is assumed to be constant. 
Define ~ ( n ,  z) := n mod (1 + 1) (this is illustrated in Fig. 4.11 for 1 = 2) and 
take a nonconformity measure A, (see (4.30) on p. 115) that depends on its 
arguments only via Izj : j E (1, . . . , i - 1, it 1, . . . , n) & ~j = K,J and (K,, zi). 
The corresponding smoothed MCP only needs a slow teacher with lag 1, and 
Proposition 4.10 implies that it is not only asymptotically valid, but is valid 
in the sense that its errors are independent Bernoulli random variables with 
the right parameter. Of course, this predictor can only be used where there is 
a surfeit of examples. 
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4.6 Proofs 

Proof of Theorem 4.2, I: nk/nk-l --t 1 is sufficient 

We start from a simple general lemma about martingale differences. 

Lemma 4.12. If C1 , J 2 ,  . . . is a martingale diference w.r. to u-algebras 
3 1 ,  F2 , .  . . and w l ,  w2,. . . is a sequence of positive numbers such that, for all 
i = 1,2, ..., 

2 IE(C? 1.6.-I) I wi , 
then 

Proof. Since elements of a martingale difference sequence are uncorrelated, 
we have 

Fix a significance level E and a power probability distribution QbO on Zm 
generating the examples zi = (xi, yi); the L-taught smooth conformal predic- 
tor rL is fed with the examples zi and random numbers ri E [0, 11. The error 
sequence and predictable error sequence of rL will be denoted 

and 

Along with the original predictor rL we also consider the ghost predictor, 
which is r fed with the examples 

and random numbers r;,ri,. . . (independent from each other and from the 
sequences zi and ~ i ) .  The ghost predictor is given all labels and each label is 
given without delay. Notice that its input sequence Z L ( ~ ~ ) ,  Z L ( ~ ~ ) ,  . . . is also 
distributed according to Q". The error and predictable error sequences of the 
ghost predictor are 
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and 

It is clear that, for each k, dn is the same for all n = nk-1 + 1,. . . ,nk, 
their common value being 

dnk = di  . (4.31) 

Corollary 4.13. For each k, 

Proof. It is sufficient to apply Lemma 4.12 to wi := ni-ni-1 (no is understood 
to be 0 in this section), the independent zero-mean (by Proposition 2.4 on 
p. 27) random variables Ji := (e: -- E ) w ~ ,  and the a-algebras 3 i  generated by 
J1 , . - - , J i .  

Corollary 4.14. For each k, 

Proof Use Lemma 4.12 for wi := ni - ni-1, ti := (e: - d:)wi, and the a- 
algebras .Ti generated by zi, . . . , zi and 71,. . . ,T:. 0 

Corollary 4.15. For each k, 

Proof Apply Lemma 4.12 to wi := 1, & := ei - di, and the a-algebras 3 i  

generated by 21,. . . , zi and 71,. . . ,Ti. 
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Lemma 4.16. Iflimk,,(nk/nk-1) = 1 for some strictly increasing sequence 
of positive integers n1, n2, . . . , then 

nf + (n2 - n ~ ) ~  + . . . + (nk - n k - ~ ) ~  
lim = 0 .  

k+, 4 
Proof. For any 6 > 0, there exists a K such that - < 6for any k > K. 
Therefore, 

from some k on. 0 

Now it is easy to finish the proof of the first part of the theorem. In 
combination with Chebyshev's inequality and Lemma 4.16, Corollary 4.13 
implies that 

in probability; using the notation k(i) := min{k : nk 2 i) = s(i) + 1, we can 
rewrite this as 

Similarly, (4.31) and Corollary 4.14 imply 

and Corollary 4.15 implies 

(all convergences are in probability). Combining (4.32)-(4.34), we obtain 

the condition nk/nk-l 4 1 allows us to replace nk with n in (4.35). 
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Proof of Theorem 4.2, 11: nk/nkFl -+ 1 is necessary 

Fix E := 5%. As a first step, we construct the example space Z, the probability 
distribution Q on Z and a smoothed conformal predictor for which d i  deviate 
consistently from E. Let X = {0), Y = {0,1), so that zi is, essentially, always 
0 or 1. The probability distribution Q is uniform on Z: Q{0) = Q{1) = 112. 
The nonconformity measure is 

It follows from the central limit theorem that 

with probability at  least 99% for k large enough. We will show that dk devi- 
ates significantly from E with probability at least 99% for sufficiently large k. 
Let ai := A(lzi, . . . , z,!-~, z,!+~, . . . , ziJ, z,!) with z(, is interpreted as y (corre- 
sponding to (x, y) in the previous subsection). There are two possibilities: 

If zi + . - + z(,-~ is odd, then 

In both cases we have ak = 1 and, therefore, outside an event of probability 
at most 1%, 

d', = (Q x U){(Y,T) : ~ l { i =  1, ..., k :  ai = 111 5 kc) 

If zi + . . . + zi-l is even, then 

In both cases ak = 0 and, therefore, outside an even of probability at  most 
1%, 
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To summarize, for large enough Ic ,  

with probability at least 99% (cf. (4.31); we write 99% rather than 98% since 
the two exceptional events of probability 1% coincide: both are the comple- 
ment of (4.36)). 

Suppose that 
n 

in probability; we will deduce that nc/nk-l - 1. By (4.34) (remember 
that Corollary 4.15 and, therefore, (4.34) do not depend on the condition 
nk/nk-l -+ 1) and (4.38) we have 

we can rewrite this in the form 
nk 

(all o(1) are in probability). This equality implies 

and 
K-1 

dnk (nk - nk-1) = n K - l ( ~  + ~ ( l ) )  ; 
k=O 

subtracting the last equality from the penultimate one we obtain 

In combination with (4.37), this implies nK -nK-l = o(nK), i.e., n ~ / n ~ - ~  -+ 

1 a s K - o o .  

Proof of Theorem 4.4 

This proof is similar to the proof of Theorem 4.2. (The definition of rL being 
asymptotically exact involves the assumption of exchangeability rather than 
randomness; however, since we assumed that Z is a Bore1 space, de Finetti's 
theorem, stated in 5A.5, shows that these assumptions are equivalent in our 
current context.) Instead of Corollaries 4.13, 4.14, and 4.15 we now have: 
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Corollary 4.17. As k -+ co, 

Proof. It is sufficient to apply Kolmogorov's strong law of large numbers 
(stated in 5A.6) to the independent zero-mean random variables = (ei - 
€)(ni - ni-1). Condition (A.8) (p. 286) follows from 

which is equivalent to (4.18). 0 

Corollary 4.18. As k + co, 

Proof. Apply the martingale strong law of large numbers (5A.6) to the mar- 
tingale difference Ji = (e: - di)(ni - ni-l) w.r. to the a-algebras 3i generated 
by z',, . . . , z: and 71, . . . ,T;. 0 

Corollary 4.19. As k + co, 

(el - 4 )  + (ez - d2) -t . . - + (e,, - d,,) 
-+ 0 as.  

nk 

Proof. Apply the martingale strong law of large numbers to the martingale 
difference Ji = ei - di w.r. to the a-algebras .Fi generated by 21,. . . , zi and 
71, ..., 76 0 

Corollary 4.17 can be rewritten as (4.32), Corollary 4.18 as (4.33), and 
Corollary 4.19 as (4.34); all convergences are now almost certain. Combining 
(4.32)-(4.34), we obtain (4.35). It remains to replace nk with n, as before. 

Proof of Theorem 4.8 

We will only consider the case where r is a smoothed conformal predictor (the 
proof for deterministic r is almost identical: just ignore all random numbers 
7) 

Fix a significance level E and define 
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Since ~ u l t i ( I ' ~ )  - m n ( r L )  is a martingale and 

the martingale strong law of large numbers (see FjA.6) implies that 

lim 
~ u l t i  ( r L )  - mn ( r L )  

= 0 as .  

Analogously, 
- 

Muk; ( r ,  (zi , z i ,  . . . )) - Multk ( r )  
lim 

k 
= 0 a.s. 

k--too 
(4.40) 

- 
By (4.39) and (4.40), we can replace Mult' with Mult in the definitions of 
u ' ( r L ,  Q)  and UYT, Q). 

It  is clear that 
mn ( r L )  = mak(,) ( r )  

for all n. Combining this with k(n) = n l c  + 0 ( 1 ) ,  we obtain 

and so m n ( r L )  = c m L n l c j  ( r )  + o(n). The statement of the theorem 
immediately follows. 

4.7 Bibliographical remarks 

Computationally efficient hedged prediction 

To cope with the relative computational inefficiency of conformal predictors, in- 
ductive conformal predictors were introduced in Papadopoulos et al. 2002a and 
Papadopoulos et al. 2002b in the off-line setting and in Vovk 2002b in the on-line 
setting. Before the appearance of inductive conformal predictors, several other pos- 
sibilities had been studied, such as "competitive transduction" (Saunders 2000) and 
"transduction with hashing" (Saunders et al. 2000; Saunders 2000). 
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Specific learning algorithms and nonconformity measures 

Equation (4.11) is sometimes known as the Sherman-Morrison formula (it can be 
checked easily by multiplying the right-hand side by K + uv' on the left and simpli- 
fying); for details, see Henderson and Searle 1981. 

The bootstrap was proposed by Efron (1979). For recent reviews, see Efron 2003 
and other articles in the same issue of Statistical Science. There are two main va- 
rieties of regression bootstrap: "bootsrapping residuals" and "bootsrapping cases". 
(For details, see Montgomery et al. 2001, pp. 509-510, or Draper and Smith 1998, 
pp. 285-286.) We only gave an example of using the first of these procedures, fol- 
lowing Davison and Hinkley 1997 (Algorithm 6.4), the original idea being due to  
Stine (1985). 

Decision trees are reviewed, besides Mitchell 1997 (Chap. 3), in Ripley 1996 
(Chap. 7); the latter contains many pointers to  the relevant literature. The C4.5 
algorithm was introduced in Quinlan 1993. 

In our description of hedged prediction based on boosting we followed Proedrou 
2003; both definitions (4.14) and (4.15) of conformity scores are due to him. The first 
boosting algorithm was proposed by Schapire (1990); AdaBoost is due to Fkeund 
and Schapire (1997). 

Neural networks are popular in both classification and regression; good references 
are Bishop 1995 and Ripley 1996. The current wave of interest was mainly initiated 
by Rumelhart and McClelland (1986). 

Cox 1970 and more recent Hosmer and Lemeshow 2000 are useful sources for 
logistic regression. Cox 1958a may be the first publication describing logistic regres- 
sion, although Jerome Cornfield might have used it several years before 1958 (Reid 
1994, p. 448). 

In this book we have given examples of nonconformity measures based on least 
squares, ridge regression, logistic regression, nearest neighbors, support vector ma- 
chines, decision trees, boosting, bootstrap, and neural networks. The number of 
known machine learning algorithms is huge, however, and potentially any of them 
can be used as a source of nonconformity measures; in particular, we did not touch 
the important class of genetic algorithms (see, e.g., Mitchell 1996). For a very read- 
able introduction to machine learning algorithms, see Mitchell 1997, and for recent 
developments see the proceedings of the numerous machine learning conferences, 
such as NIPS, ICML, UAI, COLT, and ALT. 

Weak teachers 

The characterization of lazy teachers for which conformal prediction is valid in prob- 
ability was obtained by Ilia Nouretdinov. The general notion of a teaching schedule 
and the device of a "ghost predictor" is due to Daniil Ryabko (Ryabko et al. 2003). 
Nouretdinov's result (our Theorem 4.2), generalized in light of Ryabko et al. 2003, 
appeared in Nouretdinov and Vovk 2003. Theorems 4.4 and 4.8 are from Ryabko 
et al. 2003. 

Mondrian conformal predictors 

For further information, see Vovk et al. 2003a. 
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In this and following chapters we will discuss probabilistic prediction under 
unconstrained randomness. As we noticed in Chap 1, there are several possible 
goals associated with probabilistic prediction; some of these are attainable and 
some are not. This chapter concentrates on unattainable goals (the following 
chapter will also have some negative results, but they will play an auxiliary 
role: to help us state interesting attainable goals). 

Two important factors that determine the feasibility of probabilistic pre- 
diction are: 

Are we interested in asymptotic results or are we interested in the finite 
world of our experience? 

0 Do we want to estimate the true probabilities or do we just want some 
numbers that can pass for probabilities? 

In some parts of this book (namely, when discussing efficiency of conformal 
predictors in Chap. 3 and of Venn predictors in the following chapter) we are 
interested in asymptotic results, but in this chapter we will emphasize the 
limited interest of such results for practical learning problems. The main part 
of this chapter is about estimating the true probabilities, but in the last section 
we also state and prove a result showing that already in the simplest problem 
of probabilistic prediction it is not possible to produce numbers that can pass 
for probabilities, if "can pass" is understood in the sense of the algorithmic 
theory of randomness. 

In 885.1-5.2 we state the main negative result of this chapter: probabilistic 
prediction in the sense of estimating true probabilities from a given finite 
training set is impossible under unconstrained randomness unless one can use 
precise repetition of objects in the training set. As we explained in Chap. 1, 
we are primarily interested in learning methods that work in high-dimensional 
environment, where precise repetitions are hardly possible. In 85.1 we briefly 
discuss the nature of the assumption of no repetitions, and in $5.2 state the 
mathematical result. 
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To state our results in their strongest form, in this chapter we use 
the assumption of randomness (rather than exchangeability): the examples 
zl, 22, . . . are generated from a power distribution Q" on Zm. 

5.1 Diverse data sets 

This section continues the discussion of learning under unconstrained random- 
ness started in Chap. 1. 

Important features of even moderately interesting machine-learning prob- 
lems (such as hand-written digit recognition) are: 

1. It might be reasonable to assume that different objects are drawn from the 
same probability distribution independently of each other, but we cannot 
make any further assumptions beyond randomness. 

2. The objects we are presented with will typically have a fairly complicated 
structure (in the case of the USPS data set, every object is a 16 x 16 
gray-scale matrix). 

3. In general, we do not expect the objects to be repeated precisely. 

Features 2 and 3 are closely connected but still different: one can imagine even 
complicated patterns repeated precisely (such as two twins' genetic code), and 
in many cases one can expect that even simple unstructured objects, such as 
real numbers, are never repeated (if they, e.g., are generated by a continuous 
probability distribution). 

Of course, no learning method can work unless the probability distribution 
generating the data is benign in some respects; for example, different instances 
of the same digit in the USPS data set look reasonably similar. But we may say 
that a type of learning problems is infeasible under unconstrained randomness 
if those problems can be solved only in the case where the data set has repeated 
objects. 

In some cases estimation of probabilities is possible: for example, if objects 
are absent (1x1 = 1) and Y = {0,1), estimation of the probability that 
yn = 1 given yl, . . . , yn-1 is easy (this was one of the first problems solved by 
the mathematical theory of probability; see Chap. 10). But we will see that 
in general the problem of estimation of probabilities should be classified as 
infeasible in learning under unconstrained randomness. 

5.2 Impossibility of estimation of probabilities 

The prediction problem considered in this chapter is more challenging than 
that of the preceding chapters in that the prediction algorithm is required not 
just to predict the next label yn but to estimate the conditional probabilities 
QYlx(y I xn) for y E Y. The label space Y will be assumed to be finite, and 
we start from the simplest binary case, Y = (0, l) .  We will also assume that 
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the object space X is finite. This is not a restrictive assumption from the 
practical point of view (all data sets we are aware of allocate a fixed number 
of bits for each objects) but will allow us to avoid complications coming from 
the foundations of probability. 

Binary case 

Suppose Y = {0,1); in this case the estimation of probabilities QYIX(y / xn), 
y E Y ,  boils down to estimating QYlx( l  I xn). The notions introduced in this 
subsection will be redefined (essentially, generalized) in the next one. 

A probability estimator is a measurable family of functions 

where the significance level e ranges over (0, I), n ranges over the positive 
integers, and A over subsets of the interval [ O , l ]  (typically A will be an in- 
terval, open, closed, or mixed), which satisfies, for all n, all incomplete data 
sequences, and all significance levels el > €2, 

The measurability of (5.1) means that the set 

is a measurable subset of (0, l)  x zn-' x X x [O, 11 for all n = 1,2, .  . . . 
We say that such a probability estimator is weakly valid if, for any prob- 

ability distribution Q on Z, 

In other words, a probability estimator should cover the true conditional prob- 
ability of 1 with probability at least 1 - e, under any power probability dis- 
tribution generating the data. The word "weakly" is to emphasize the lack 
of the requirement of independence of errors at different trials (we say that a 
probability estimator makes an error if it does not cover the true probability). 
The following result is our formalization of the impossibility of estimation of 
probabilities in the binary case. 

Proposition 5.1. For any weakly valid probability estimator I' there is an- 
other weakly valid probability estimator f such that, for any incomplete data 
sequence XI,  yl, . . . , xn that does not contain repeated objects and for any 
e E (O,l), 
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Let us see why the conclusion (5.4) can be interpreted as saying that 
nontrivial probability estimation is impossible. Let us assume for simplicity 
that the region output by r is an interval [a, b]. The case where [a, b] contains 0 
or 1 corresponds to classification: for example, if a = 0, the prediction [a, b] = 
[0, b] essentially says that we expect the new label to be 0, with b quantifying 
our confidence in this prediction. Genuine probability estimation corresponds 
to the case [a, b] 5 (0, I) ,  and the theorem says that if we can output such 
an estimate, we can also output an empty (which is better, because more 
precise) estimate. An empty estimate is analogous to a contradiction in logic: 
the foundation for the inference is not sound (the examples are not typical 
under the randomness assumption) and everything can be deduced. Slightly 
abusing the standard statistical terminology, we may say that an estimate 
[a, b] S (0 , l )  is not admissible: it can be improved to being false. 

Multi-label case 

Let now Y be an arbitrary finite set (with the discrete a-algebra). The notions 
defined in the binary case in the previous subsection can be carried over to the 
general case as follows. A probability estimator is a family of functions (5.1), 
where E E (0, I), n = 0,1,. . . , and A ranges over subsets of the family P(Y) of 
all probability distributions on Y ,  which is required to satisfy the conditions 
of consistency (5.2) (whenever €1 2 €2) and measurability (i.e., (5.3) being a 
measurable subset of (0,l) x Zn-I x X x P(Y)  for all n). Such a probability 
estimator is weakly valid if, for any probability distribution Q on Z, any n, 
and any incomplete data sequence XI ,  yl, . . . , x,, 

where Q(. I x,) is the probability distribution on Y assigning probability 
QY~X(Y I xn) to each Y E Y.  

Let PO(Y) be the subset of P (Y)  consisting of the non-degenerate 
probability distributions p on Y,  i.e., those distributions p that satisfy 
maxUEyp(y) < 1. The following theorem is a generalization of Proposi- 
tion 5.1. 

Theorem 5.2. For any weakly valid probability estimator r there is an- 
other weakly valid probability estimator such that, for any incomplete data 
sequence XI ,  yl, . . . , x, that does not contain repeated objects and for any 

E (0, I),  
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5.3 Proof of Theorem 5.2 

We first sketch the idea behind the proof. Let Q be the true probability 
distribution on Z generating the individual examples. We can imagine that the 
incomplete data sequence (XI, yl, . . . , x,), supposed not to contain repeated 
objects, is generated in two steps. First for each x E X we choose randomly 
g(x) E Y setting g(x) := y with probability QYlx(ylx); this is done for each x 
independently of the other xs. After such a function g : X -+ Y is generated, 
we generate xi E X,  i = 1,. . . , n, independently from Qx and finally set 
yi := g(xi). 

There is no way to tell from the data sequence XI,  yl, . . . , x, whether it 
was generated from Q or from Q x  and g and so, even if the true distribution 
QYIX(y 1 x,), y E Y, is not degenerate, we will not be able to exclude the 
corners of the simplex P(Y)  from our forecast P ( x l ,  yl, . . . , x,) (unless the 
sequence XI, yl, . . . , x, itself is untypical of Q). 

Probability estimators and statistical tests  

Our first step will be to reduce Theorem 5.2 to a statement about "incomplete 
statistical tests". Complete statistical tests, which are not really needed in this 
book but clarify the notion of incomplete statistical tests, will be discussed 
in the next subsection. In this chapter statistical testing serves merely as a 
technical tool; it will be discussed more systematically in the following two 
chapters. 

An incomplete statistical test is a measurable function t : Z* x X x P(Z) -+ 

[O, 11 such that, for any n, Q E P(Z), and E E [O,l]: 

(we write Q as a lower index: tQ(xl, yl . . . , x,) instead of t(x1, y1,. . . , x,, Q)). 
If tQ(xl, y1.. . , x,) 5 E, we say that the test t rejects Q at level E (the incom- 
plete data sequence XI,  yl . . . , x, will be clear from the context). 

There is a close connection (although by no means equivalence) between 
weakly valid probability estimators and incomplete statistical tests: 

0 If r is a weakly valid probability estimator, 

(with sup 0 := 0) is an incomplete statistical test. 
If t is an incomplete statistical test, 

is a weakly valid probability estimator. 
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The second statement is obvious, and the first follows from 

Complete statistical tests 

To help the reader's intuition, we briefly discuss a more natural notion of 
statistical test. A function t : Z* x P(Z) + [O, 11 is called a complete statistical 
test if, for any n, Q E P(Z), and E E [O, 11: 

Complete statistical tests provide a means of testing whether a data sequence 
zl, . . . , zn could have been generated from a power distribution Qn. 

To any incomplete statistical test tQ(xl, y1, . . . , xn) corresponds the com- 
plete statistical test 

and to any complete statistical test t~ (XI, yl, . . . , xn, yn) corresponds the in- 
complete statistical test 

Restatement of the theorem in terms of statistical tests 

Now we can start implementing the idea of the proof sketched above. For any 
probability distribution Q E P(Z) and any g : X + Y define the weight 

(this is the probability of generating g according to the procedure in the proof 
sketch) and define the probability distribution Qg on Z by the conditions that 
(Q,)x = QX and that (Qg)YIX(. 1 x) is concentrated at the point g(x) for all 
x E X (Q, is the probability distribution governing the second stage of the 
procedure of generating the incomplete data sequence in the proof sketch). 
Notice that 

C n u ( g ) = l .  
g:x-Y 

Theorem 5.2 will be deduced from the following statement. 
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Proposition 5.3. For any incomplete statistical test t there exists an  incom- 
plete statistical test T such that the following holds. If (XI, yl, . . . , x,) is an  
incomplete data sequence without repeated objects and Q E P(Z), then there 
exists g : X -+ Y such that 

To prove Proposition 5.3, we will need the following lemma, in which 
[XI, yl, . . . , x,] stands for the set of all infinite continuations (elements of 
Zoo) of x1,y1,. . . , xn. 

Lemma 5.4. For any incomplete data sequence XI,  yl, . . . , xn without re- 
peated objects and any Q E P(Z), 

Proof. Let Q be the mixture zg:X_Y Q y r Q ( 9 ) .  In this proof we will use the 
notation Xi for the ith random object and Yi for the ith random label chosen 
by Reality; xi and yi will be the values taken by Xi and Y,, respectively. (In 
the rest of the book we mostly use xi and yi to serve both goals.) We have, 
for any yn E Y: 

(of course, the second equality is true only because all objects X I , .  . . , xn are 
different). 0 

The proof shows that, if there are repeated objects in w, we still have an 
inequality between the two sides of (5.9): "I" if the same object is always 
labeled in the same way in w, and "2" otherwise (the latter is obvious, since 
in this case the right-hand side of (5.9) is zero). 

It is easy to derive the statement of Proposition 5.3 from Lemma 5.4. 

Proof of Proposition 5.3. Define 

maxg:x-+y t~~ (XI, y1,. . . ,xn) if all X I , .  . . , xn are different 

otherwise. 
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This is an incomplete statistical test since, by Lemma 5.4, 

It is obvious that T will satisfy the requirement of Proposition 5.3. 0 

The proof 

It remain to derive Theorem 5.2 from Proposition 5.3. Let r be a weakly valid 
probability estimator. Define an incomplete statistical test t by (5.6). Let T be 
an incomplete statistical test whose existence is guaranteed by Proposition 5.3. 
Define a probability estimator p as r in (5.7) with t replaced by T. 

Let XI,  yl, . . . , x, be an incomplete data sequence. If the antecedent of 
(5.5) holds, t will reject at  level E all Q for which QYlx('  I x,) is degenerate. 

By (5.8), Twill reject all Q at  level E .  By the definition of p, F y x l ,  yl, . . . , y,) 
will be empty. 

Remark We can see that the problem of the possibility of learning the con- 
ditional probabilities for y, given x, is simple in two cases: if a significant 
number of X I , .  . . ,x,-1 coincide with x,, we can estimate the conditional 
probabilities from the available statistics; if all objects XI ,  . . . , x, are differ- 
ent, the task is infeasible, unless the probabilities are degenerate. It would be 
interesting to study intermediate cases (such as: none of xl,  . . . , x,-1 coincides 
with x, but there are repetitions among them). 

5.4 Bibliographical remarks and addenda 

Theorem 5.2 (in the binary case, i.e., Proposition 5.1) was first proved in Nouretdinov 
et al. 2001b. The original statement of this theorem was given in terms of algorithmic 
randomness, but later it was strengthened by restating it in more traditional terms 
(as mentioned in Chap. 2, this is a typical development). The algorithmic result and 
the idea of its proof were first mentioned in Vovk et al. 1999. 

Our proof of Theorem 5.2 was based on the notion of a statistical test; this 
is, of course, a standard notion of statistics, but in the form used here it was first 
introduced, perhaps, by Per Martin-Lof (1966) in his version of Kolmogorov's theory 
of algorithmic randomness. 

Density estimation, regression estimation, and regression with 
deterministic objects 

Vapnik (1995, 1998) lists pattern recognition (called classification in this book), 
regression estimation, and density estimation as the three main learning problems. 
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The goal of Nouretdinov et al. 2001b was to study the feasibility of these problems 
under unconstrained randomness. 

In the version of the problem of density estimation relevant to the topic of this 
book ("conditional density estimation"), we start from a measure p on the label 
space Y and our goal is, given a new object x,, to estimate the density (which is 
assumed to exist) of the probability distribution of its label y, w.r. to the measure 
p. The standard case is where Y is a Euclidean space, but Proposition 5.1 shows 
that this problem is infeasible already in the simplest case Y = (0,l). Most of the 
existing literature deals with the case where the objects are absent. For a recent 
exposition of the theory see Devroye and Lugosi 2001; Vapnik (1998) constructs a 
version of SVM for density estimation. 

There are several possible understandings of the term "regression". In 52.3 we 
constructed an efficient confidence predictor for regression under unconstrained ran- 
domness. There are, however, two popular understandings (one of them setting a 
different goal and the other making a different assumption about Reality) that are 
not feasible for diverse data sets under unconstrained randomness. 

One understanding is "regression estimation": we assume that the examples are 
generated independently from some probability distribution Q on Z and our goal is, 
given (xi, yi), i = 1,. . . , n - 1, and x,, to estimate the conditional expectation of y, 
given x,. This problem is infeasible already in the simple case Y = (0, I), since it 
is then coincides with that of probability estimation. 

Another understanding is "regression with deterministic objects". A classic text- 
book (Cramkr 1946) clearly describes two different assumptions that can be made 
in regression: 

in one approach (Cram& 1946, Chap. 23) it is assumed that the examples (xi, yi) 
are generated by some power distribution; 
in the other approach (Cram& 1946, Chap. 37) it is assumed that the objects xi 
are generated by an unknown mechanism (for example, are chosen arbitrarily by 
the experimenter) and only the labels yi are generated stochastically; namely, 
it is assumed that for every x E X there is a probability distribution Q(x) on 
Y such that y; is generated from Q(xi) (formally, Q is required to be a Markov 
kernel from X to Y) .  

The first model (essentially the model used in Chap. 2) is the combination of the 
second model (with no assumptions about xi) and the assumption that xi are gen- 
erated by a power distribution. It is easy to see that regression in the second sense 
is infeasible under unconstrained randomness for diverse data sets. Indeed, if we 
have a data sequence (XI, yl), . . . , (x,, y,) such that all xi are different, it will be 
perfectly typical (e.g., algorithmically random) w.r. to any Markov kernel Q such 
that &(xi) is concentrated at  yj, i = 1, . . . , n; therefore, nontrivial prediction of y, 
given XI, yl, . . . , xn is not possible. Of course, the situation changes if additional 
assumptions are imposed on the Markov kernel Q: cf, the discussion of the Gauss 
linear model in Chap. 8. 

Universal probabilistic predictors 

In Chap. 1 we mentioned Stone's (1977) result about the existence of a universally 
consistent probabilistic predictor. This result has been improved and extended in 
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different directions, and its version was used in Chap. 3 (Lemma 3.9 on p. 83). In- 
tuitively, the fact that conditional probabilities can be estimated to any accuracy 
in the limit, under unconstrained randomness and without assuming precise repe- 
titions, appears to be in some conflict with this chapter's results. From the purely 
mathematical point of view it suffices to say, as we did in Chap. 3, that convergence 
in Stone's theorem and its extensions is not uniform. For details, see Devroye et al. 
1996 (Chap. 7); we will only illustrate this with a simple example. 

Suppose x, are generated from the uniform distribution on [O,1] and y, = f (x,), 
where f : [O, 11 + {0,1) is a Borel function; we want our inferences to hold without 
any further assumption about f .  Asymptotically, predicting with the majority of 
the K, nearest neighbors of x, (with K, + m and K, = o(n)) we will ensure that 
the frequency of errors (Qylx( l  1 x,) # f (x,), in our usual notation) tends to zero 
(Lemma 3.9 above). Before infinity, however, we cannot say anything at  all about 
the closeness of our predictions to the true conditional probabilities. For any given 
value of n,  no matter how large, there exists an f agreeing with the available data 
(i.e., such that f (xi) = yi, i = 1,. . . , n - 1) for which f (x,) = 0 and there exists an 
f agreeing with the available data for which f (x,) = 1. 

At a more philosophical and controversial level, it might even be argued that the 
asymptotic results about universal probabilistic prediction (and so, by implication, 
some of our results in Chaps. 3 and 6) are devoid of empirical meaning. Let Y = 
(0,l). If the object space X is fixed and finite, the objects in the data sequence 
zl, 22,. . . will eventually start to repeat, no matter how big X is, and we will then 
be able to estimate Q(llz,). Kolmogorov's axioms of probability include the axiom 
of continuity (A.l) (equivalent, in the presence of the other axioms, to a-additivity). 
According to Kolmogorov (1933a, p. 15 of the English translation), it is almost 
impossible to elucidate the empirical meaning of this axiom and its acceptance is 
an arbitrary, although expedient, choice. (For further details, see Shafer and Vovk 
2003.) It appears that the main effect of the acceptance of this axiom was to make 
infinite probability spaces (the subject of Chap. I1 of Kolmogorov 1933a) similar to 
finite probability spaces (the subject of Kolmogorov's Chap. I). Fixing X (maybe 
infinite but with the probability distribution generating examples satisfying the 
axiom of continuity (A.l)) and letting n -+ m might be just an embellished version 
of fixing a finite X and letting n -+ m. More relevant, from the empirical point of 
view, asymptotic results would consider a variable object space X; e.g., we could 
consider a triangular array XI, yl, . . . , x,, yn where x, E X,, y, E Y, and X, is an 
increasing sequence of Borel spaces. 

Algorithmic randomness perspective 

Theorem 5.2 shows that probabilistic prediction is infeasible in the sense that the 
conditional probability for the label cannot be estimated, under the stated condi- 
tions. A related question is: can we find a conditional probability which is as good 
as the true conditional probability? The former can be far from the latter, but still 
be as good in explaining the data. The following result by Ilia Nouretdinov for- 
malizes this question using the algorithmic notion of randomness (Martin-Lof 1966) 
and shows that the answer is "no", even if the labels are binary and the objects 
are absent. Remember that the notion of algorithmic randomness has nothing to do 
with the assumption of randomness (see the remark on p. 49). 
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Theorem 5.5. For any computable probability distribution P on (0, there exist 
a computable Bernoulli distribution Be on {O,1) and an infinite sequence in (0, 1Ioo 
which is algorithmically random w.r. to BF but not algorithmically random w.r. to 
P. 

The probability distribution P in this theorem is the suggested way of finding a good 
conditional probability (since a conditional probability can be found for any data 
sequence, these conditional probabilities can be put together to form a probability 
distribution). The theorem asserts that there exists a power distribution (even a 
computable one) and an infinite sequence which can be produced by this power 
distribution but for which P is not a good explanation. 

Proof. If w = (yl, ya, . . . ) E {O,l)m is an infinite binary sequence, we set 

Let Be be the Bernoulli distribution on { O , l )  corresponding to a parameter 0 E 
[O, 11. For each n = 1,2,. . . , N(n) is defined constructively as any number N such 
that, for any 8 E [O, 11, 

Set 

and 

Define inductively, for n = 1,2,. . . , 

and then 
un := {W E Un-1 : ON(,)(W) E [an, bn]) , 

where the choice between (5.10) and (5.11) is done effectively and so that P(Un) 
decreases significantly (say, P(U,) 5 $P(Un-I)). Finally, set 

0 := lim a, = lim b, 
n-oo n-oo 

and 
u := nnun . 

The statement of the theorem follows from the following properties of this con- 
struction: 

1. U is a constructively null set (P(U) = 0 since P(Un) 5 $P(u,-1) for all n) and 
0 is computable. 

2. U contains some algorithmically random sequences w.r. to BF. 
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Only the last property requires a separate proof. 
Using BF(U0)  = 1 and the fact that 

we obtain 

B r ( U n - I  \ Un) 5 B?{w : o N ( n ) ( ~ )  $ [an, bnl) 

< BY {W : lQN(,)(w) - Q l  > 2 x 5 2-,-' ; 

therefore, B F ( U )  2 112. 
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We saw in Chap. 1 that there are different types of algorithms for learning un- 
der randomness, where examples (objects with labels) are drawn one by one 
from an unknown probability distribution. Appropriate criteria for validity 
and efficiency may vary from type to type. In Chap. 2, we developed crite- 
ria for the validity and efficiency of confidence predictors, and we developed 
a class of confidence predictors, conformal predictors, that satisfy the crite- 
rion for validity while varying in their efficiency. In this chapter, we study 
algorithms of a new type, multiprobability predictors. We develop a crite- 
rion of validity for multiprobability predictors, and we introduce and study 
a class of multiprobability predictors, Venn predictors, that satisfy the cri- 
terion for validity when the label space is finite. Venn predictors also vary 
in their efficiency, but we will see that there are arguments, both theoretical 
and empirical, for the efficiency of some simple Venn predictors; therefore, the 
impossibility of estimation of non-extreme probabilities in a diverse random 
environment (Theorem 5.2) does not prevent us from producing probabilities, 
perhaps quite different from the "true" ones, which perform well in important 
respects. 

Venn predictors use a familiar idea: divide the old objects into categories, 
somehow classify the new object into one of the categories, and then use the 
frequencies of labels in the chosen category as probabilities for the new object's 
label. We innovate only in a couple of details: 

We divide examples rather than objects into categories. When we compute 
the frequencies of labels in the category containing the new example, we 
include the new example along with the old examples already in that 
category. Since at the time of prediction we do not yet know the new 
object's label, we compute these frequencies several times, once for each 
label the new object might have. (This is analogous to the way we treat the 
new object when we use a nonconformity measure to define a conformal 
predictor .) 
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We interpret each set of frequencies as a probability distribution for the 
new object's unknown label. Thus we announce several probability distri- 
butions for the new label rather than a single one. Fortunately, once the 
number of old examples in each category is large, these different probabil- 
ity distributions will be practically identical. 

The task of valid multiprobability prediction, which is achieved by Venn 
predictors, can be contrasted with the more demanding task of valid prob- 
abilistic prediction. In valid probabilistic prediction, we announce a single 
probability distribution for each new label y,, n = 1,2,. . . , and these proba- 
bility distributions are supposed to perform well against statistical tests based 
on the subsequent observation of the labels. We cannot expect to achieve valid 
probabilistic prediction under unconstrained randomness (even in the binary 
case, as was shown in Theorem 5.5). Our criterion for validity for multiprob- 
ability prediction lowers the bar in two respects. First, we gain some wiggle 
room when we are allowed to announce several probability distributions; we 
get by whenever one of them is acceptable. Second, instead of being exposed 
to arbitrary tests, we are exposed only to tests of calibration. Tests of calibra- 
tion check only whether probabilities are matched by observed frequencies; 
for example, a particular label should occur in about 25% of the instances in 
which we give it a probability near 0.25. 

The first section of this chapter, $6.1, studies on-line probabilistic predic- 
tion in some depth. Here we discuss how on-line probabilistic predictions can 
be tested using supermartingales and how to identify the supermartingales 
that test calibration. We also state an important impossibility result: under 
unconstrained randomness, there is no strategy for probabilistic prediction 
that will perform well even against tests of calibration. This impossibility 
result motivates our replacing single probabilities with multiple probabilities. 

In $6.2, we formulate our criterion of validity for multiprobability predic- 
tion. This involves a straightforward extension of the concept of supermartin- 
gale testing from single probability distributions to multiple probability dis- 
tributions. 

In $6.3, we define precisely the class of Venn predictors and show that these 
predictors do provide multiprobability predictions that are valid according to 
our criterion. Our discussion in this section includes empirical results on the 
USPS data set; we find that the Venn predictor based on the nearest neighbor 
idea performs reasonably well on this data set. At the end of $6.3 we look more 
carefully at the contrast between Venn predictors, which provide numbers 
that have some but not all of the properties of probabilities, and conformal 
predictors, which provide numbers that are even less like probabilities. 

In $6.4, we give an asymptotic result: there exists a Venn predictor that 
asymptotically approaches the true conditional probabilities. Unfortunately, 
this result is impractical in the same sense as the other strong asymptotic 
results we discuss in this book (see Chap. 5). 
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In Chap. 9, we will extend the concepts introduced in this chapter to 
on-line compression models. 

6.1 On-line probabilistic prediction 

Probabilistic prediction, or probability forecasting, as it is often called, has 
been studied for several decades (see the review by Dawid 1986). The existing 
literature often emphasizes asymptotic theory, but as we show in this section, 
there are reasonable ways to test finite sequences of probabilistic predictions, 
and in particular there are reasonable ways to test them for calibration. 

The framework we use for probabilistic prediction in this section is very 
close to the framework we introduced in Chap. 2. We observe a sequence of 
examples, each example z, consisting of an object x, and its label y,. At 
each trial, we first see the object and want to predict the label. The object is 
drawn from a measurable space X, and the label is drawn from a measurable 
space Y,  so that Z = X x Y.  But there are three points of difference from 
Chap. 2: 

1. As in Chap. 3, we now deal with the problem of classification, assuming 
that the label space Y is finite. (We carry this assumption throughout 
this chapter.) 

2. Instead of imagining that the sequence of examples zl, 2 2 , .  . . continues 
indefinitely, we now assume that we will observe only a finite number of 
examples, say 21,. . . , z ~ ,  and that we know the number N, called the hori- 
zon, in advance. (We carry this assumption through most of the chapter, 
dropping it only in 56.4.) 

3. We do not assume that the examples (21,. . . , zN) are drawn from an 
exchangeable probability distribution. (We will come back to the assump- 
tion that the examples are drawn from an exchangeable, or even power, 
probability distribution, but this assumption is out of place in a general 
treatment of probabilistic prediction.) 

We assume that the probability distribution P on zN comes supplied with 
regular conditional probabilities (see sA.4; they exist because Y is finite), so 
that there is no ambiguity when we speak of the regular conditional distribu- 
tion of y, given xl, yl,. . . , x,; for y E Y,  we will write P(y  I XI,  yl, . . . , x,) for 
the conditional P-probability that y, = y given XI ,  yl , . . . , x, (in particular, 
P(yn I XI, yl, . . . , x,) will be the conditional probability of the realized label 
Yn g i v e n x l , y l , . . - , ~ n ) .  

This is a long section, with a number of subsections. In the first subsection 
(p. 146), we formulate the task of probabilistic prediction in terms of a game 
protocol. In the following subsection (p. 147), we use a simplified version 
of this protocol, where Y has only two elements, to discuss informally how 
probabilistic predictions can be tested and in particular how their calibration 
can be tested. Then we look at two ways of formalizing the notion of a test: 
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we can check whether an event of small probability occurs (p. 148), or we can 
check whether a nonnegative martingale gets much larger than its initial value 
(p. 150). In both cases, we consider the test to be a test of calibration if it 
does not depend on the order of the examples. Finally, in the last subsection 
(p. 154), we state our negative result: no strategy for probabilistic prediction 
performs well against tests of calibration. 

There are no results in this section that will be used in the rest of the chap- 
ter; but what we learn here motivates our definitions in 86.2. The fact that 
we cannot perform well against tests of calibration when we predict with sin- 
gle probability distributions motivates the consideration of a set-up where we 
predict with multiple probability distributions, and the martingale concepts 
developed here motivate the corresponding concepts for multiprobability pre- 
diction. In addition, the definition~ and notation for game martingales that 
we introduce in this section (see p. 150) are taken for granted in 86.2. 

The on-line protocol for probabilistic prediction 

Probabilistic prediction means giving probabilities for outcomes before the 
outcomes become known. In our on-line setting, where we are observing 
XI,  yl, . . . , XN, y~ in sequence and we have just observed x,, this means giving 
a probability distribution, say p,, for y, in light of the previous information, 
XI,  yl, . . . , x,. This is the task of Predictor in the following protocol, where 
we write P(Y) for the set of all probability distributions on Y: 

PROBABILISTIC PREDICTION 

FOR n = 1,2,. . . , N :  
Reality announces x, E X; 
Predictor announces p, E P(Y);  
Reality announces y, E Y 

END FOR. 

If Predictor knew the probability distribution P on zN from which the 
sequence XI ,  yl, .  . . , X N ,  YN is drawn, then he would, of course, set his p, 
equal to P's conditional probability for yn given XI ,  yl, . . . , x,. This would 
not guarantee that Predictor's p, would pass a given test; the y, might by 
chance come out in such a way that the pn would be rejected. But this is not 
too likely, and we can still say that Predictor is performing perfectly when he 
announces the true conditional probabilities. 

Because Predictor does not know P ,  he cannot perform perfectly. We can 
nevertheless hold perfect performance up as his goal and test whether the 
observed sequence XI,  yl, . . . , XN,  YN is consistent with the hypothesis that it is 
drawn from a distribution P that has Predictor's p l ,  . . . , p~ as its appropriate 
conditional probabilities. After all, the ability to withstand all kinds of tests 
is the only possible empirical meaning for the assumption that a sequence is 
drawn from a probability distribution with certain properties. 
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At the end of this section, we will turn our attention to strategies for 
Predictor - rules that tell Predictor how to choose p, in light of the previous 
moves by Reality, XI ,  yl, . . . , x,. We would like to have Predictor's strategy 
whose probabilistic predictions stand up to tests of calibration as well as 
possible. 

An informal look at testing calibration 

Consider for a moment the case where Y has only two elements, say Y = 
{0,1}. In this case, we can write p, for the probability Predictor announces 
for the event y, = 1, and our protocol takes this form: 

BINARY PROBABILISTIC PREDICTION 

F O R n =  1,2, ..., N: 
Reality announces x, E X; 
Predictor announces p, E [0, 11; 
Reality announces y, E {O,l) 

END FOR. 

This simplified protocol is useful for an informal discussion of some standard 
ideas about testing the calibration of probabilistic predictions. 

One obvious question is whether Predictor's p, tend to be too high or too 
low overall. We can test this by comparing their overall average, 

with the overall frequency of 1s among the y,, 

then we may say that the p, are "unbiased on average". If the approximate 
inequality (6.1) is violated - if jjN and pN are too different - then we may 
reject the pn on the grounds that they are biased on average. 

A more refined test of calibration would look at the subset of n for which 
p, is close to a given value p*, and compare the frequency of y,, = 1 in this 
subset, say jjN(p*), with p*. If 

vN (p*) M p* for all p* , (6.2) 

then the p, can be considered "well calibrated". Probabilistic predictions that 
pass this test at least get the frequencies right; in this sense they tell the truth. 
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It is easy to see, however, that good calibration is not enough to make 
probabilistic predictions useful. A popular example for demonstrating this 
point assumes that it is known in advance that the labels will follow the 
pattern 

1 if n is odd 

Yn={  0 otherwise. 

In this example, Predictor can achieve excellent calibration by always setting 
p, = 0.5. But the probabilistic predictions pl = l ,p2  = 0,.  . . are preferable, 
because they predict y, exactly with certainty. 

What we need in addition to good calibration is sometimes called "high 
resolution". This term suggests a procedure like the one we will use for our 
Venn predictor in 56.3: Predictor sorts the objects into categories and uses 
the frequencies in the category where a new object x, falls as his probabilis- 
tic prediction p,. The more numerous the categories - the more information 
Predictor takes into account in creating the categories - the greater the res- 
olution and the more useful the probabilistic prediction should be. In the 
example given by (6.3), Predictor should use two categories and predict y, 
perfectly rather than using one category and always giving the probability 0.5. 
The shortcoming of the term "resolution" is that this procedure may be too 
special. It  is not always better to have more categories, and we do not want to 
rule out Predictor's using some completely different kind of algorithm for cal- 
culating his probabilities. So rather than speak of resolution, we will speak of 
efficiency. Probabilistic predictions are efficient when they are as informative 
- as close to zero or one - as possible. 

Testing using events of small probability 

In general, a statistical test of a hypothesis is defined by identifying a set 
that has a small probability if the hypothesis is true. According to Cournot's 
principle (Shafer and Vovk 2003), the hypothesis may be rejected if the event 
of small probability happens. 

Let us now consider how this idea applies to our general probabilistic 
prediction protocol, where Y is finite but not necessarily binary. To begin, we 
set 

n := (P(Y) x Y ) ~  . (6.4) 

This is the space of all sequences of play pl, yl, . . . , p ~ ,  y~ with all the objects 
omitted (since they are not involved1 in the idea of calibration). We call 17 
the game space, and we call any measurable subset of 17 a game event. Given 
a game event E and a probability distribution R on zN with specified regular 
conditional probabilities R(. I 21,. . . , z,-l, x,) E P(Y) for different possible 
values of y,, we set 

'1t might be interesting to  consider "conditional" notions of calibration (within 
natural categories of examples), but we only consider the simplest case. 
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This is probability that E will happen if the sequence of examples is drawn 
from R and Predictor uses R's specified regular conditional distributions as 
his strategy. We define the upper probability P(E) of a game event E by 

where the supremum is over all probability distributions with regular condi- 
tional probabilities - i.e., over all ways of specifying the probability distribu- 
tion R and all ways of specifying regular conditional probabilities for it. 

The upper probability F(E) is the highest probability E can have if the p, 
are appropriate conditional probabilities for whatever probability distribution 
governs the x, and y,. If P(E) is small - say less than some specified small 
probability 6 - and E happens, we invoke Cournot's principle and reject at 
level 6 the hypothesis that the p, are appropriate conditional probabilities. 
In this case we may say that E is a level 6 statistical test; we will sometimes 
call 6 the significance level of the test. 

Example 6.1. To illustrate these definitions, consider the problem of testing 
average unbiasedness for the binary case, as defined by (6.1). Here we plan to 
reject Predictor's pl, . . . , p ~  if IpN - pN I is too large. There are many ways of 
deciding how large is too large: we can use Chebyshev's inequality, the central 
limit theorem, large deviation inequalities, etc. As an example, we consider a 
particular large deviation inequality, Hoeffding's inequality (see 5A.7). This 
inequality implies that for any 6 > 0, 

where p, is the conditional probability that y, = 1 given XI ,  yl, . . . , x,. It 

for any 6 > 0 whenever p, is the conditional probability that y, = 1 given 
XI ,  yl, . . . , x,. Hence the game event 

has upper probability F(E) less than or equal to 6. When E happens, we can 
invoke Cournot's principle and reject the p, at level 6. 
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Calibration events 

We call a game event E a calibration event if it is invariant with respect to 
permutations - i.e., if 

for any sequence (pl , yl , . . . , p ~ ,  y ~ )  E 17 and any permutation n of the set 
(1,. . . , N}. Intuitively, calibration events are the events that can be used to 
test calibration. 

The game event (6.7) is a calibration event in the binary protocol; more 
generally, any natural formalization of (6.1) and (6.2) will give a calibration 
event. 

Testing using nonnegative supermartingales 

As we will see later in this chapter (Example 6.4) and in the following chapter, 
on-line tests can often be described more conveniently in terms of nonnegative 
martingales or nonnegative supermartingales than in terms of events of small 
probability. A very brief introduction to the standard theory of martingales is 
given in 5A.6, but in this chapter we will also need the following less standard 
definitions: 

A game martingale is a measurable function G on the sequences of the 
form pl ,  yl, . . . ,pn, yn, where n = 0,. . . , N, pi E P(Y),  and yi E Y ,  that 
satisfies 

for all pl,  yl, . . . ,pn, n = 1,.  . . , N. 
A game supermartingale is a measurable function G on the same domain 
that satisfies 

for all pl, yl, . . . ,pn, n = 1, . . . , N. 
A calibration martingale (resp., calibration supermartingale) is a nonneg- 
ative game martingale (resp., nonnegative game supermartingale) whose 
final value is invariant under permutations: 

for any pl, yl, . . . , p ~ ,  y~ and any permutation n of (1,. . . , N}. 

We can define the upper probability of a game event E in terms of game 
martingales or game supermartingales: 
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where is the empty sequence and G ranges over all nonnegative game mar- 
tingales, or, equivalently, where G ranges over all nonnegative game super- 
martingales. In the case where X is finite and pn are constrained to a finite, 
as dense as we wish, subset of P(Y), definition (6.10) is equivalent to the def- 
inition we gave in the preceding subsection, (6.5) (see Lemma 6.8 on p. 164 . 

-me s 
When the difference between the two definitions is essential, we will use P 

-game 

a! 
to denote (6.5) (the "measure-theoretic definition") and P to denote (6.10) 
(the "game-theoretic definition"). Doob's inequality (p. 285) shows that it is 
always true that pmeas 5 Fgame. 

-game 
The next proposition shows that, for calibration events, P (E) can be - - . , 

equivalently defined by letting G range over the calibration supermartingales 

Proposition 6.2. If E is a calibration event, P r n e ( ~ )  equals the right-hand 
side of (6.10) where G ranges over the calibration supermartingales. 

Proof. Let E be a calibration event and a game supermartingale G satisfies 

Set 

n ranging over the permutations of (1,. . . , n). The measurability of G* follows 
from there being only finitely many n in (6.11); it is clear that 

therefore, it only remains to prove that 

(6.12) 
Let n be a permutation of (1,. . . , n- 1) at which the infimum in the definition 
of the left-hand side of (6.12) is achieved. We then have 
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We may use game martingales or, more generally, game supermartingales 
to test Predictor's p,: we reject the p, at level 6 E (0, l)  if a nonnegative game 
supermartingale that starts at 6 becomes 1 or more at  the end of the protocol. 
Equivalently, we reject the p, at level 6 if a nonnegative game supermartingale 
that starts at 1 becomes 116 or more at  the end; such testing procedures 
may be called level 6 martingale tests. In principle, it is not necessary to fix 
a threshold 116 in advance; we can just interpret the value attained by a 
nonnegative game supermartingale starting at 1 as measuring the strength 
of evidence against p,. If we want to test for calibration, we should use a 
calibration supermartingale. 

The concepts of game martingale and game super martingale have a natural 
interpretation in terms of betting (analogous to the usual betting interpreta- 
tion of the concepts of martingale and supermartingale in standard probability 
theory). To see this, imagine a player, say Gambler, who bets on y, at  the 
probabilities given by pn right after Predictor announces p,. If Gambler is 
allowed to bet at  odds that are fair according to the probability distribution 
p,, then his payoff will have expected value zero relative to p,: 

FOR n = 1,2,. . . , N :  
Predictor announces p, E P(Y);  
Gambler announces fn : Y + R with Sy fn(y)pn(dy) = 0; 
Reality announces y, E Y 

END FOR. 

If we write G(p1, yl, . . . ,p,, y,) for Gambler's capital at  the end of the nth 
trial, then 

and hence (6.8) holds. If Gambler is allowed to throw money away or to 
make bets that are unfavorable to himself rather than fair, then we obtain 
instead (6.9). 

We conclude this subsection with two examples of testing calibration using 
calibration supermartingales. 

Example 6.3. To test (6.1) using martingales, let us again turn to Hoeffding's 
inequality; this time, however, we will need its proof rather than statement. 
According to (A.12) (on p. 288) and its derivation, 

are both game supermartingales, for any e > 0, and their sum is evidently 
nonnegative and invariant under permutations of the examples. Any multiple 
of their sum is therefore a calibration supermartingale. It follows that rejecting 
when 
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is a level 6 martingale test of calibration. If we set E := 2 d m ,  then 
this level 6 martingale test rejects whenever the level 6 statistical test (6.7) 
rejects. 

Example 6.4. The problem of testing calibration using a partition of the trials 
based on the values of p,, (6.2), is subtler than the problem of testing overall 
unbiasedness, (6.1). 

An obvious first step is to split the interval [ O , 1 ]  into K bins 

of equal width 1/K and look at  the deviations 

where Nk := I{n = 1,. . . , N : p, E Bk)l is the number of p, that fall in Bk. 
If we now try to bound the probabilities for the events (6.16), however, we 

face the serious difficulty that the inequalities that do this, such as Hoeffd- 
ing's inequality (see (A.9) and (A.lO) on p. 287), require that the number of 
examples N be fixed in advance, whereas the Nk in (6.16) are random. We 
might choose a threshold T and apply Hoeffding's inequality to the first T 
examples in the bin Bk if Nk > T, but it unclear how large T should be. We 
have no a priori estimate of the magnitude of Nk, and it seems likely that 
however we choose T,  either Nk will be much larger than T (in which case 
we will be using the loose upper bound 2 exp(-2e2T) instead of the desired 
2exp(-2e2Nk)) or Nk will fall short of T (in which case we will forfeit this 
opportunity to test calibration altogether). 

Supermartingales are flexible enough to avoid this difficulty. Calibration 
supermartingales testing (6.2) are easily constructed from the game super- 
martingales (6.14). The most natural one is perhaps 

K 
€2 Nk" 

x e x p k  k=l G{l, ..., n } : p i € B k  ( % - Y ~ ) - ~ ) ) ,  (6.17) 

where Nc := I{i = 1,.  . . , n : pi E Bk)l is the number of the pi among the first 
n that fall in the kth bin. 

At the intuitive level, a reasonable choice of E would be of the same order of 
magnitude as the expected maximum deviation in different bins of the average 
probabilistic prediction from the average label. If, for example, the average 
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label is greater than the average prediction by €14 in the kth bin, the final 
value of the calibration supermartingale (6.17) will be at least 

which is large when Nk is large enough and K is moderately large. If the best 
choice of E is not clear, we can always "mix" the calibration supermartingales 
for different values of e, and instead of (6.17) use, e.g., 

for a suitable probability distribution p on [O,  11. 0 

Predictor has no satisfactory strategy 

We turn now to the question of how well a strategy for Predictor can perform 
with respect to calibration. As we warned at the beginning of the chapter, we 
will give the obvious negative answer: no strategy for Predictor can produce 
probabilistic predictions that look as well calibrated as the ones Predictor 
could produce if he knew the probability distribution from which the examples 
are drawn. 

Formally, a strategy for Predictor, or a probabilistic predictor, as we are 
calling it, is a Markov kernel F that assigns a probability distribution 

to each sequence (XI, 91,. . . , x,) E zn-l x X, for n = 1,. . . , N .  It tells Pre- 
dictor to use this probability distribution as his move p, when Reality has 
previously made the moves XI,  yl, . . . , x,. (We already used the notion of a 
probabilistic predictor in discussions of Chaps. 1 and 5, but without a formal 
definition.) 

We now assume that the individual examples (x,, yn) are drawn in- 
dependently from some distribution Q on Z, so that the entire sequence 
XI ,  yl, . . . , XN, y~ is drawn from the power distribution Q~ on zN. 

If Predictor knew Q, he would use the conditional probabilities QYIX(- I 
x,) given by Q, and he would then have a reasonable expectation that his 
probabilistic predictions would look well calibrated: for any calibration event 
E, the probability under QN of E happening would not exceed B(E). He might 
be unlucky; we might test his calibration using E, and E might happen, 
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and then we would proclaim him poorly calibrated. But the chance of this 
happening would be no greater than advertised by the significance level of 
our test. 

Ideally, we want a probabilistic predictor F that performs equally well 
even though it is defined without knowledge of the true Q. More precisely, we 
want F to satisfy this condition: for any probability distribution Q on Z and 
any calibration event E, the QN-probability that 

never exceeds P(E). We call a probabilistic predictor F that satisfies this 
condition weakly N-calibrated. 

Formally, there are two versions of the notion of a weakly N-calibrated 
strategy: measure-theoretic, in which P(E) is understood as P m e a S ( ~ ) ,  and 

-game 
game-theoretic, in which F(E) is understood as P (E). Here is our negative 
result, which holds for both versions: 

Theorem 6.5. No weakly N-calibrated probabilistic predictor exists. 

In order to set the stage for the criterion for validity that we will for- 
mulate for multiprobability prediction in the next section, let us restate the 
game-theoretic definition of weak N-calibration. Because of Theorem 6.5, this 
discussion will be vacuous from the formal point of view; we believe that it 
still has a heuristic value, but the reader might wish to skip the rest of this 
section. 

Let Fn be the o-algebra generated by the first n examples 21,. . . , z,, 
n = 1,. . . , N. We will say "P-supermartingale" to mean a supermartingale in 
the probability space (zN,  FN,  P) w.r. to the filtration Fl, . . . , FN. 

-game 
Note that P (E) < 1/C for a calibration event E means that there 

exists a calibration supermartingale G that starts at one and reaches C when- 
ever E happens, whereas QN(A) < 1/C for the event A G zN defined by 
(6.18) means (by Ville's theorem on p. 285) that there exists a nonnegative 
QN-supermartingale S that starts at one and reaches C whenever A happens. 
(For simplicity, we assume that the infima in (6.9) and (A.7) are attained.) 
Thus the QN-probability of (6.18) is less than or equal to p g a m e ( ~ )  if and 
only if the existence of such a G implies the existence of such an S. Be- 
cause this is required for any calibration event E ,  we get this statement: A 
probabilistic predictor F is weakly N-calibrated if and only if for any probai 
bility distribution Q on Z, any calibration supermartingale G with G(O) = 1, 
and any threshold C > 0 there exists a nonnegative QN-supermartingale 
S = (So, S1,. . . , SN) with S o  = 1 such that 

for all XI, yl, . . . , XN, YN. 
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Once the definition of weak N-calibration is put in this form, it is natural 
to strengthen it by requiring that the same S work for all thresholds C. This 
produces the following definition. A probabilistic predictor F is N-calibrated 
if for any probability distribution Q on Z and any calibration supermartingale 
G with G(O) = 1 there exists a QN-supermartingale So,. . . , SN with So = 1 
such that 

for all XI, yl, . . . , XN, YN. (The supermartingale S is necessarily nonnegative.) 
Intuitively, this says that if a sequence xlyl . . . XNYN evidences some degree 
of F's miscalibration, then it is untypical of QN to the same degree. 

As it turns out, we will find it convenient to use a concept that is even a 
bit stronger than N-calibration: first, we replace power distributions QN with 
exchangeable distributions on zN, and second, we replace calibration super- 
martingales with nonnegative LLreversible" supermartingales, in the sense of 
the following definition. Let us say that a game martingale or supermartingale 
G is reversible if its final value does not change when the order of labels and 
probabilistic predictions is reversed: 

for all (pl, yl, . . . , p ~ ,  YN) E II; we will usually abbreviate "reversible game 
martingale" and "reversible game supermartingale" by omitting "game". The 
requirement that G be nonnegative and reversible is evidently weaker than 
the requirement that it be nonnegative and invariant under permutations of 
the examples. So the following definition demands more than N-calibration. 
A probabilistic predictor F is strongly N-calibrated if for any exchangeable 
probability distribution P on zN and any nonnegative reversible supermartin- 
gale G with G(O) = 1 there exists a P-supermartingale So, .  . . , SN with 
S o  = 1 such that (6.19) holds for all XI ,  yl, . . . , XN, YN. Because no weakly 
N-calibrated probabilistic predictor exists, no N-calibrated or strongly N- 
calibrated probabilistic predictor exists. But as we will see in the next sec- 
tion, there are multiprobability predictors that satisfy an analogue of strong 
N-calibration. 

6.2 On-line multiprobability prediction 

We now generalize the protocol for probabilistic prediction: instead of being 
required to give a single probability distribution for the forthcoming label, 
Predictor can give several. Multiprobability prediction in this sense will be 
our topic for the remainder of the chapter. 

We call a measurable strategy for Predictor in our multiprobability pre- 
diction protocol a multiprobability predictor. (Essentially, the notion of a mul- 
tiprobability predictor is a simplified version of that of a probability estimator 
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in s5.2.) In this section, we spell out the protocol and state our criterion for 
validity for a multiprobability predictor. In the next section, we describe the 
class of multiprobability predictors that we call Venn predictors and state a 
theorem showing that they satisfy this criterion. 

The on-line protocol 

Our generalization of the probabilistic prediction protocol is very simple. In- 
stead of asking Predictor to give a single probability distribution p, E P(Y),  
we ask him to give a set of probability distributions P, C P(Y).  So play goes 
like this: 

F O R n =  1,2, ..., N: 
Reality announces x, E X; 
Predictor announces P, C P(Y);  
Reality announces y, E Y 

END FOR. 

In order for the predictions P, to be useful, their constituent probability 
distributions should not be too different from one another. We would hope 
that for large n and each y E Y ,  the probabilities p{y) given by different 
p E P, will all fall within a small interval, so that we can say that Predictor 
has given an approximate probability for y. 

Remark The measurability of a multiprobability predictor means that the 
set 

is a measurable subset of Zn-I x X x P(Y)  for all n = 1,. . . , N (cf. (5.3) on 
p. 133). However, for the strategies that interest us, the Venn predictors we 
describe in the next section, P, always consists of a finite number of proba- 
bility distributions on the finite set Y ,  the number being at most the number 
of elements in Y. Therefore, the reader might wish to replace the assumption 
that P, is a set of probability distributions on Y with the assumption that 
it is a list of K probability distributions on Y ,  repetitions being permitted. 
This means replacing "P, S P(Y)" by "P, E ( P ( Y ) ) ~ "  in the protocol. 

We use the same notions of game martingale and game supermartingale as 
in probabilistic prediction (see p. 150), except that we extend the domain of 
definition for a game martingale or supermartingale G from sequences of the 
form pl, yl, . . . ,p , ,  y,, where pl, . . . ,p, are single probability distributions on 
Y ,  to sequences of the form PI, yl, . . . , P,, y,, where PI , .  . . , P, are sets of 
probability distributions on Y,  by 
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This definition is motivated by our intuitive picture of multiprobability fore- 
casting, in which Predictor only claims that some p in P, describes y, well, 
and so we can claim to reject the multiprobability forecasts PI,. . . , P, if and 
only if we have rejected all probability forecasts (pl, . . . ,p,) E PI x - .  x P,. 

We will use the notions of a calibration/reversible martingale/supermartin- 
gale introduced in the previous section. If a calibration martingale or super- 
martingale G starts with G(O) = 1 and ends with G(P1, yl,.  . . , PN, y ~ )  very 
large, then we may reject the calibration of Predictor's PI,. . . , PN. 

Validity 

We call a multiprobability predictor F N-valid if for any exchangeable prob- 
ability distribution P on zN and any nonnegative reversible game super- 
martingale G with G(O) = 1, there exists a P-supermartingale So,. . . , SN 
with So = 1 such that 

for all XI, yl, . . . , XN, y ~ .  This is analogous to the condition of being strongly 
N-calibrated for probabilistic predictors (p. 156). 

6.3 Venn predictors 

In this section we formally define Venn predictors, which were described in- 
formally in the introduction, and we show that they are valid multiprobability 
predictors. 

We begin with the concept of a taxonomy (or, more fully, Venn taxonomy). 
This is a sequence A,, n = 1,. . . , N, where each A, is a measurable finite 
partition of the space z(,-') x Z. (A finite partition is said to be measurable 
if each element of the partition is measurable; for simplicity, we only consider 
finite partitions here.) As usual, we write A,(w) for the element of the par- 
tition A, that contains w E z(,-') x Z. For every taxonomy A1, Az, . . . , AN, 
we will define a Venn predictor. 

Having chosen a taxonomy Al, Az, . . . , AN, consider a label y E Y, and 
consider the situation in the multiprobability prediction protocol where Re- 
ality has made the moves x ~ ,  yl, . . . , x,-~, y,-1, x, and Predictor is about to 
make his move P,. Write (as usual) zi for (xi, yi) and (just for the moment) 
z, for (x,, y). Then partition the bag 121,. . . , znJ into categories, assigning 
zi and zj to the same category if and only if 
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The category T containing z, = (x,, y) is nonempty, because it contains at 
least this one element. Let p, be the empirical probability distribution of the 
labels in this category T: 

this is a probability distribution on Y.  The Venn predictor determined by the 
taxonomy is the multiprobability predictor P, := {p, : y E Y). The set P, 
consists of between one and K distinct probability distributions on Y ,  where 
K = IYI. 

There are many Venn predictors, one for each taxonomy. Some will be 
more efficient than others on particular data sets. But all share one virtue: 

Theorem 6.6. Every Venn predictor is an N-valid multiprobability predic- 
to?. 

In order to emphasize the applicability of our theory to finite data sets, we 
have fixed the horizon N. But the moves recommended by a Venn predictor 
do not depend on the particular horizon N. The moves recommended on trial 
n depend only on the partition A,, and they do not change if we increase N 
by extending the sequence of partitions A1, Ag, . . . ,AN. 

The problem of the reference class 

In choosing the partitions that determine a Venn predictor, we face the 
dilemma that is often called the "problem of the reference class". We want 
the categories into which we divide the examples to be large, in order to have 
a reasonable sample size for estimating the probabilities. But we also want 
them to be small and homogeneous. According to K i l ~ n ~  (2001), John Venn 
was the first to formulate and analyze this problem with due philosophical 
depth. To see how the problem of the reference class comes into our picture, 
it suffices to consider the case where Y is binary: Y = {0,1). 

First consider the Bernoulli problem: we observe only the successive labels 
91,. . . , y ~ ,  not preceded by objects; as usual in the binary case, p, will be the 
probability Predictor announces for the event y, = 1. In this problem, we want 
to make a probabilistic prediction for each new label y, in light of the previous 
labels yl, . . . , y,-1. The most naive probabilistic prediction is p, = k/(n - I ) ,  
where k is the number of 1s among the first n - 1 labels and it is assumed 
that n > 1. There are other possibilities, such as Laplace's rule of succession, 
pn = (k + l ) / (n  + 1). But when n is large, k/(n - 1) and (k + l)/(n + 1) 
are close to each other and to any other reasonable choice for p,. The only 
natural Venn predictor agrees with this consensus: since there are no objects 
x,, we take each A, to be the partition that puts all the examples in the 

2 ~ h i s  being a special case of Theorem 9.1 (p. 224) in Chap. 9, we do not provide 
a proof in this chapter. 
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same category, and this produces the Venn predictor P, = {kin, (k + l ) /n);  
in particular, the convex hull co P, contains both k/(n- 1) and (k+ l) /(n+ 1). 
Notice that since there are only n examples, the diameter l / n  of P, for this 
Venn predictor is the smallest achievable. 

Now suppose 1x1 > 1 and the x, vary a great deal, so that the examples 
21,. . . ,z,-l are quite heterogeneous. In this case the probabilistic prediction 
k/(n - 1) for y, seems too crude when n is large. A more reasonable predictor 
would take into account only objects xi that are similar, in a suitable sense, 
to x,. The classical approach, described on p. 143, is: 

Split the available objects X I , .  . . , x,-1 into a number of categories. 
0 Output kr/n' as the probability that y, = 1, where nr is the number 

of objects among XI ,  . . . , x,-1 in the same category as x, and k' is the 
number of objects among those nr that are labeled as 1. 

This is where we face the problem of the reference class. 
The procedure that produces a Venn predictor is a simple modification of 

the classical procedure: 

0 Consider the two possible completions of the known data 

in one (the 0-completion) x, is assigned label 0, and in the other (the 
1-completion) x, is assigned label 1. 

0 In each completion, split all examples 21,. . . , z,-l, (x,, y) into a number 
of categories, so that the split does not depend on the order of examples 
(Y = 0 for the 0-completion and y = 1 for the 1-completion). 

0 In each completion, output k'/nr as the probability that y, = 1, where n' 
is the number of examples among 21,. . . , z,-l, (x,, y) in the same category 
as (x,, y) and k' is the number of examples among those n' that are labeled 
as 1. 

The new procedure differs from the classical one in two salient ways: (1) we 
can use the old labels as well as the old objects in dividing the old examples 
into categories, and (2) we now have two predicted probabilities instead of 
one. The first difference offers an advantage with no obvious disadvantage: 
we have greater flexibility in how we divide the old examples into categories. 
The second difference, having two probabilities for y, = 1 rather than one, 
might be considered a disadvantage for the new procedure, but it can also 
be considered an advantage. If the two probabilities are quite different, then 
the uncertainty in the probability can be considered substantial, and the new 
procedure makes this uncertainty visible rather than hiding it. 

Of course, the most important advantage of the new procedure is its va- 
lidity: the procedure is automatically calibrated in a quite satisfactory sense, 
no matter how we choose the "reference classes". The reference class prob- 
lem that remains can be considered an issue for efficiency. We must balance 
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two kinds of inefficiency. Too many categories in our partition is a kind of 
overfitting, and it is punished by a large diameter for the multiprobability 
prediction. Too few categories is a kind of underfitting, and it is punished by 
predictions that are not close enough to zero or one. 

Empirical results 

In this section, we report how a natural Venn predictor performs on the USPS 
data set (see fjB.1). 

The taxonomy that defines the Venn predictor is based on the l-nearest 
neighbor algorithm. Since the data set is relatively small (9298 examples in 
total), we make the taxonomy very coarse: two examples are assigned to the 
same category if their nearest neighbors have the same label. This produces 
10 categories. The distance between two examples is defined as the Euclidean 
distance between their objects (16 x 16 matrices of pixels, represented as points 
in R256). 

The algorithm processes the nth object xn as follows. First it creates the 
10 x 10 matrix A whose entry Aij, i, j = 0,. . . ,9, is computed by assigning 
i to xn as label and finding the fraction of examples labeled j among the 
examples in the bag lzl , .  . . , Zn-l, (xn, i)J belonging to the same category as 
(x,, i). The quality of a column of this matrix is its minimum entry. Choose a 
column (called the best column) with the highest quality; let the best column 
be jbest. Output jbest as the prediction and output 

as the interval for the probability that this prediction is correct. If the latter 
interval is [a, b], the complementary interval [l - b, 1 - a] is called the error 
probability interval. We say that this procedure makes an error when predicting 
Yn if Yn # jbest. 

In Fig. 6.1 we show the following three curves: the cumulative error curve 

where erri = 1 if an error is made at trial i and erri = 0 otherwise; the 
cumulative lower error probability curve 

and the cumulative upper error probability curve 
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Fig. 6.1. On-line performance of the 1-nearest neighbor Venn predictor on the USPS 
data set (9298 hand-written digits, randomly permuted). The dotted line shows the 
cumulative number of errors En and the solid ones the cumulative upper and lower 
error probability curves U, and L,. In this particular experiment, the mean error 
EN/N is 4.25% and the mean probability interval (l/N) [LN, UN] is [4.07%, 4.19%], 
where N = 9298 is the size of the data set 

where [li, ui] is the error probability interval output by the algorithm at trial 
i for the label yi; the values En, L, and U, are plotted against n. The plot 
confirms that the error probability intervals are well calibrated. 

Probabilities vs. p-values 

In the earlier chapters we saw that it is possible to produce valid and asymp- 
totically optimal pvalues and to put them to practical use in confidence pre- 
diction. They do have disadvantages, however, relative to probabilities: their 
interpretation is less direct than that of probabilities, and many people con- 
fuse them with probabilities. These disadvantages weigh so heavily with some 
authors that they counsel against any use of p-values (see, e.g., Berger and 
Delampady 1987). 

The multiprobabilities defined in this chapter seem to address some of 
these concerns. We have already mentioned that a family of prediction sets 

output by a confidence predictor can be usefully summarized by reporting 
the confidence (3.66) (p. 96) in this prediction; it is easy to see that the 
confidence can also be expressed as one minus the second largest among the 
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p-values computed for all the potential labels for the new object. In some 
ways confidence is analogous to the probability that the simple prediction 
corresponding to the maximal p-value is correct; the difference, however, is 
very important. 

Suppose, for example, that a Venn predictor outputs pn = 99% in the 
binary case. Then we expect y, = 1 and we know that we will be wrong 
in about 1% of similar examples, those where our prediction is close to 99%. 
This is different from what we know when a valid confidence predictor outputs 
y, = 1 with confidence 99%. With a valid confidence predictor, we can only 
assert that the frequency with which we will be wrong for similar or more 
extreme examples (examples where our confidence is at least 99%) will be 
close to or less than 1%. It is the inclusion of the clause "or more extreme" 
that some authors find unconvincing. Another important difference is that 
in the case of confidence predictor the frequency is taken over the full data 
sequence, not just over examples predicted confidently. 

6.4 A universal Venn predictor 

The following result asserts the existence of a universal Venn predictor. As the 
proof (given in the next section) shows, such a predictor can be constructed 
quite easily, using the histogram approach to probability estimation (Devroye 
et al. 1996). 

Theorem 6.7. Suppose X is a Bore1 space and Y is finite. Let Q be a proba- 
bility distribution on  Z with regular conditional probabilities QYJX(- I -). There 
exists a Venn predictor such that, i f  the examples are generated from Qoo, 

in probability, where Pn are the multiprobabilities produced by the Venn pre- 
dictor and p i s  the variation distance, 

This theorem can be interpreted by saying that some Venn predictors have 
asymptotically optimal efficiency. We proved a similar result for p-values in 
Chap. 3. Our current result is much easier to prove but is weaker in form: it 
only asserts convergence in probability. Whether there exists a Venn predictor 
for which (6.21) holds almost surely is an open question. 

6.5 Proofs 

Proof of Theorem 6.5 

Assume, without loss of generality, that the object are absent (1x1 = 1) and 
Y = {0,1) (remember that IYI 2 2 in this book). We will prove that for 
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any probabilistic predictor F there exist a probability distribution Q on Y 
and a calibration event E such that the QN-probability that the sequence 
p_lyl.. . p ~ y ~  of Predictor and Reality's moves belongs to E exceeds F(E); 
P(E) will be understood in the sense of p g a m e ( ~ ) ,  since p rneaS(~)  5 F g a m e ( ~ ) .  

Fix a probabilistic predictor F. Define sequences yr . . . y> E (0, 1IN and 
pT . . . p> E [0, 1IN inductively as follows: 

1 ifpE:=F(y; ,..., y:-,) 5 0 . 5  
" := (0 otherwise 

(cf. Dawid 1985). Let E be the game event consisting of p; yT . . . pfv y> and 
all its permutations. (As usual in the binary case, we identify a probability 
distribution p on { O , l )  with the number p{l) E [0, 11.) There are two possible 
cases: 

Not all p; equal 0.5: define Q as the Bernoulli distribution on { O , l )  with 
parameter 0.5. The QN-probability that the sequence ply1 . . . p ~ y ~  of 
Predictor and Reality's moves belongs to E will be at least 2-N ithis 
is the probability that Reality generates exactly yT . . . y>) and pgam (E) 
will be less than 2-N. 

All p i  equal 0.5: define Q as the Bernoulli distribution on { O , l )  with pa- 
rameter l :  Q{1) = l. The QN-probability that the sequence ply1 . . .PNYN 

of Predictor and Reality's moves belongs to E will now be equal to 1 (since 
all y; are now 1) and p m e ( ~ )  will be precisely 2-N. 

In both cases the QN-probability that the sequence pl yl . . . p ~ y ~  of Predictor 
and Reality's moves belongs to E exceeds pgarne(~) .  

Equivalence of the two definitions of upper probability 

The equivalence between (6.5) and (6.10) (pp. 149 and 151) is analogous to 
Ville's theorem (see §A.6), and a similar result is proved in Shafer 1996a. Un- 
fortunately, to avoid technical difficulties we have to impose two assumptions 
of finiteness, but these assumptions are not restrictive in the finite world of 
applications (cf. p. 133). 

Fix a finite set D C P(Y)  and modify (6.4) (p. 148) to 

Lemma 6.8. Suppose the object space X is finite. For all E C 170, 
- -game 
P r n e a S ( ~ ) = P  ( E ) .  

Proof. We are required to prove that 
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R ranging over the probability distributions on zN and G ranging over the 
nonnegative game supermartingales; p? is the regular conditional distribution 
under R for the different possible values of yi given zl , . . . , zi-1 and xi. 

The part ''I" of (6.22) follows from the fact that 

for all nonnegative game supermartingales G. Since 

is an R-supermartingale (by Lemma A.2 on p. 281), (6.23) is a special case of 
Doob's inequality (p. 285). Therefore, this part holds in general and does not 
require the assumptions that X is finite and that pn are constrained to D. 

Equality (6.22) follows from the fact that both its sides equal 

sup J . . . sup J sup J 
P I E D  Y P N - I E D  Y P N E D  Y 

This can be seen by setting 

f ( P I , Y I , . . - , P ~ , Y ~ )  := sup J . . . sup J 
pn+iED Y P N E D  Y 

I[E(PI,YI,. . . ,PN,YN)PN(~YN) 

and showing that, for all n and all pl ,  yl, . . . ,pn, yn, 

(R ranges over the probability distributions on z ~ - ~  and pf, for i = n + 
1,. . . , N,  is the conditional probability distribution under R for the different 
possible values of the ith label given that the first i - 1 examples and the ith 
object are x i ,y i , . .  . , x  n , ~ n , x ~ + ~ , ~ ~ + l , . . . , ~ r - l , ~ , t _ l , ~ f )  and 

(with G ranging over the nonnegative game supermartingales) by induction 
o n n = N , N - 1 ,  ..., 0. 0 
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Proof of Theorem 6.7 

Since X is a Bore1 space, we assume, without loss of generality, that X = [O, 11. 
For each n = 1,2,. . . consider the partition of the interval [ O , l ]  into bins Bk, 
which will now be denoted Bn,k, given by (6.15) (p. 153); the number of bins 
K = Kn is now allowed to depend on n. We will be interested in the case 
where Kn -+ oo but Kn/n  -+ 0 as n -+ oo. 

Let (xi, yi), i = 1,2, .  . . , be the examples output by Reality. Define, for 
every (GY) E Z, 

where B,(x) is the bin in the nth partition (consisting of the bins Bn,k, 
k = 1,. . . , K,) containing x, Nn(x) is the number of i = 1,. . . , n such that 
xi E Bn (x), Nn(x, y) is the number of i = 1, . . . , n such that xi E B, (x) and 
yi = y, and the uncertainty 010 is resolved to, say, 1/IY I. 

We will need the following analog of Lemma 3.9 (p. 83). 

Lemma 6.9. Suppose K,  -+ oo, K, = o(n), and Y = (0, l) .  For any 6 > 0 
and large enough n, 

where the outermost probability distribution = Qoo generates the examples 
(xi, yi), which determine the empirical distributions Qn and "semi-empirical 
distributions" Q i  . 
Proof. See Devroye et al. 1996, Theorem 9.4 and the second displayed equation 
on p. 139. 0 

As in Chap. 3 (see the proof of Lemma 3.10), we obtain the following lemma 
for the multilabel case. 

Lemma 6.10. Suppose K, -+ oo and K, = o(n). For any 6 > 0 there exists 
a 6* > 0 such that, for large enough n, 

This lemma implies the analogous statement (Corollary 6.12) for the empirical 
distributions Q,, but we need an intermediate step. 

Lemma 6.11. Suppose Kn -+ co and Kn = o(n). For any 6 > 0 there exists 
a 6* > 0 such that, for large enough n, 

~ { Q X  {X : I Nn(x)ln - 1 > 6 > 6 5 e-6*n. 
Qx (Bn (XI) I > }  
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Proof. Replacing maxycy by CyEY in (6.24), we obtain 

it remains to notice that 

The two preceding lemmas immediately give 

Corollary 6.12. Suppose Kn -+ oo and Kn = o(n). For any 6 > 0 there 
exists a 6* > 0 such that, for large enough n, 

The following result is proved in Devroye et al. 1996 (Theorem 6.2 and its 
proof): 

Lemma 6.13. Suppose Kn -+ oo and Kn = o(n). For any constant C, 

Qx{x : N, (x) > C) -+ 1 

in probability as n -+ oo. 

Now it is easy to prove Theorem 6.7. Consider the Venn predictor deter- 
mined by the taxonomy in which An(D, (x, y)) consists of all (D', (x', y')) such 
that x and x' are in the same bin Bn,k (so that An(D, (x, y)) does not depend 
on the bag D E z("-~) or the label y E Y). It suffices to show that 

in probability as n -+ oo (remember that, by the definition of Venn predictor, 
Qn(. 1 x,) E Pn). But this is simple: (6.25) follows from Lemma 6.13 and (6.26) 
follows from Corollary 6.12. 
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6.6 Bibliographical remarks 

Testing 

The theory of testing statistical hypotheses based on Cournot's principle has a very 
long history, going back a t  least to Arbuthnott 1710-1712, and the literature de- 
voted to this topic is vast. Testing using martingales is also popular: for example, 
martingales (in the form of probability ratios) are widely used in sequential analysis 
for this purpose. However, even when testing is done using martingales, the basic 
principle is usually still Cournot's (see, e.g., Wald 1947, Wald and Wolfowitz 1948); 
the value taken by a nonnegative martingale starting from one is rarely interpreted 
as measuring the weight of evidence found against the statistical hypothesis. The 
martingale approach to testing free of Cournot's principle is discussed in Vovk 1993, 
Shafer and Vovk 2001. 

Frequentist probability 

In this chapter we have been concerned with probabilities that are valid in the sense 
of agreeing with the observed frequencies (cf. (6.2) on p. 147). John Venn was one of 
the first writers on frequentist probability; see his book Venn 1866. A major figure in 
the area was Richard von Mises, who connected the frequentist notion of probability 
with the principle of the excluded gambling system (see Mises 1919, Mises 1928); 
the latter lead to  Ville's notion of martingale (Ville 1939). 



Beyond exchangeability 

In Chaps. 2-6 we assumed that all examples output by Reality are exchange- 
able. This is a strong assumption, but it is standard in machine learning 
(where the even stronger assumption of randomness is usually made). In this 
chapter we discuss how to test and how to relax this assumption. 

Section 7.1 considers the problem of testing the exchangeability assump- 
tion. This problem is important in its own right and also needed in $7.2, where 
we discuss modeling a "stochastically dynamic" environment. 

Intuitively, the exchangeability assumption means that Reality is stochas- 
tically static. This is especially clear if we recast it as the randomness as- 
sumption (assuming that the example space Z is Bore1 and appealing to de 
Finetti's theorem of sA.5); the examples are then generated from the same 
stochastic mechanism independently. In $7.2 we assume, instead, that there is 
a static "random core" on which a less complicated dynamic structure is su- 
perimposed. In $7.3 we briefly consider another relaxation of the assumption 
of randomness: it is only assumed that certain subsequences of the full data 
sequence output by Reality satisfy this assumption. It is possible to combine 
relaxations considered in $57.2 and 7.3, but this is straightforward and we do 
not discuss the details. 

7.1 Testing exchangeability 

This section discusses on-line ways of monitoring the strength of evidence 
against the assumption of exchangeability. Such on-line monitoring is often 
a wise thing to do even if the exchangeability assumption is tentatively ac- 
cepted. We already saw in the previous chapter that a convenient and natural 
on-line way of testing statistical hypotheses is provided by nonnegative su- 
permartingales. Since, however, this chapter is conceptually simpler than the 
previous one, we made these two chapters independent of each other. 

We will start this section by introducing the notion of exchangeability su- 
permartingales, which are in effect on-line procedures for detecting deviations 
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from exchangeability. Intuitively, nonnegative exchangeability supermartin- 
gales are betting schemes that never risk bankruptcy and do not benefit the 
gambler under the hypothesis of exchangeability. We then construct some spe- 
cific exchangeability supermartingales from conformal transducers, introduced 
in 82.5. Finally, we will report experimental results showing the performance 
of those exchangeability supermartingales on the USPS benchmark data set of 
hand-written digits (known to be somewhat heterogeneous; see Appendix B); 
one of them multiplies the initial capital by more than 10ls; this could be 
expressed in statistical terms by saying that the hypothesis of exchangeability 
is rejected at  the significance level 10-Is. 

Exchangeability supermartingales 

In this section we set up our basic framework, defining the fundamental notion 
of exchangeability supermartingale and the closely related notion of random- 
ized exchangeability martingale. In our standard learning protocol, Reality 
outputs examples zl, 22,. . . , each of which consists of two parts, an object 
and its label. In the theoretical considerations of this chapter, however, we 
will not use this additional structure; therefore, the example space Z is not 
assumed to be a Cartesian product X x Y. 

We are interested in testing the hypothesis of exchangeability on-line: after 
observing each new example zn we would like to have a number Mn reflecting 
the strength of evidence found against the hypothesis. Let us first consider 
testing the simple hypothesis that zl, 22,. . . are generated from a probability 
distribution P on Z". We say that a sequence of random variables Mo, M I ,  . . . 
is a P-supermartingale if, for all n = 0,1,. . . , Mn is a measurable function of 
21,. . . , zn (in particular, Mo is a constant) and 

where E refers to the expected value in the probability space in which zl, 22, . . . 
are generated from P. If Mo = 1 and inf, Mn 2 0, Mn can be regarded as 
the capital process of a player who starts from 1, never risks bankruptcy, 
at the beginning of each trial n  places a fair (cf. (7.1)) bet on the zn to be 
chosen by Reality, and maybe sometimes throws money away (since (7.1) is an 
inequality). If such a supermartingale M ever takes a large value, our belief in 
P is undermined; this intuition is formalized by Doob's inequality (see §A.6), 
which implies 

P { ( z I , z ~ ,  ...) : 3 n :  Mn 2 C )  5 1 / C ,  (7.2) 
where C is an arbitrary positive constant. 

When testing a composite hypothesis P (i.e., a family of probability dis- 
tributions on Zoo), we will use P-supermartingales, i.e., sequences of random 
variables Mo, MI, .  . . which are P-supermartingales for all P E P simultane- 
ously. We are primarily interested in the family P consisting of all exchange- 
able probability distributions P on Z"; in this case we will say exchangeability 
supermartingales to mean P-supermartingales. 
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Remark If P is the set of all power probability distributions Q", Q ranging 
over the probability distributions on Z, P-supermartingales are called ran- 
domness supermartingales. De Finetti's theorem (see 8A.5) and the fact that 
Borel spaces are closed under countable products (see, e.g., Schervish 1995, 
Lemma B.41) imply that each exchangeable distribution P on Z" is a mix- 
ture of power distributions Q" provided Z is Borel. By Property 3 (p. 280) 
of conditional probability distributions the notions of randomness and ex- 
changeability supermartingales coincide in the Borel case. But even without 
the assumption that Z is Borel, all exchangeability supermartingales are ran- 
domness supermartingales. 

Another useful notion is that of randomized exchangeability martingales; 
these are sequences of measurable functions Mn (zl ,r l ,  . . . , zn, 7,) (each ex- 
ample zn is extended by adding a random number € [O, 11) such that, for 
any exchangeable probability distribution P on Z", 

IE referring to the expected value in the probability space in which zl, 22, . . . 
and rl,r2,.  . . are generated from P and U" (remember that U is the uniform 
distribution on [O,l]) independently. 

Remark An exchangeability martingale is defined as an exchangeability su- 
permartingale such that (7.1) holds as equality for any exchangeable P, and 
the notion of randomized exchangeability supermartingale is obtained by re- 
laxing the "=" in (7.3) to ">". We do not need these notions, however: the 
notion of exchangeability martingale is too restrictive and that of random- 
ized exchangeability supermartingale is unnecessarily wide (our goals can be 
achieved already with randomized exchangeability martingales). 

Remark In our definitions of martingale (7.3) and supermartingale (7.1) we 
follow Doob 1953, 811.7 and the beginning of 8VII.1. (Doob, however, did 
not use the term "supermartingale"; for details, see Snell 1997, p. 307.) A 
more modern approach (cf. Shiryaev 1996, Shafer and Vovk 2001; introduced 
already in Doob 1953) would be to replace the condition " 1 MI,.  . . , M," 
in (7.3) and (7.1) by " 1 Fnn ,  where 3, is the a-algebra generated by zl, . . . , zn 
in the case of (7.1) and z l , r l ,  . . . , z,, rn in the case of (7.3) (i.e., 3, repre- 
sents all information available by the end of trial n). To see how restrictive 
conditions (7.3) and (7.1) are, notice that the notions of randomized exchange- 
ability martingale and exchangeability supermartingale become trivial when 
this apparently small change is made: if the example space Z is Borel, the 
latter will be decreasing processes (Mo 2 MI > . - .  ) and the former will only 
bet on the random numbers rl,r2,. . . . 

Power supermartingales and the simple mixture 

We know from 52.5 that the p-values pl,p2,. . . output by a smoothed confor- 
mal transducer are independent and distributed uniformly in [0, 11. They can 
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be used for constructing exchangeability supermartingales and randomized 
exchangeability martingales. 

Since epz-Idp = 1 for E > 0, the random variables 

where pi are the p-values output by a smoothed conformal transducer, will 
form a nonnegative randomized exchangeability martingale with initial value 
1; this family of martingales, indexed by E E [0, I], will be called the power 
martingales (notice that MLO) is different from the other power martingales in 
that M,(O) f 1). To eliminate the dependence on E, we may use the randomized 
exchangeability martingale 

which is called the simple mixture of M:). 
If pl,p2,. . . are produced by a deterministic conformal transducer, the 

random variables (7.4) will form a nonnegative exchangeability supermartin- 
gale with initial value 1 (unless E = O), and this family of supermartingales is 
called the power supermartingales. The simple mixture (7.5) will then be an 
exchangeability supermartingale. 

Remark There is a simple way to compute the values Mn of the simple 
mixture (7.5). Denoting b := - ln(pl . .pn), where pi are the p-values output 
by a (smoothed) conformal transducer, we find: 

where 
b 

7(a, b) := 1 ta-'e-'dt, a > 0, b > 0 ,  

is one of the definitions of the incomplete gamma function. 

All experiments described in this section are performed on the full USPS 
data set with no pre-processing of images, as described in Appendix B. Our 
goal will be to detect deviations from exchangeability for this data set. 

We saw in Chap. 3 that a nearest neighbors smoothed conformal predictor 
provides a universally optimal, in an asymptotic sense, on-line algorithm for 
prediction under the assumption of exchangeability. On the empirical side, 
we also saw that a 1-nearest neighbor conformal predictor performs reason- 
ably well on the USPS data set. Therefore, it is natural to expect that the 
nearest neighbor(s) approach will also perform well in the problem of test- 
ing exchangeability. This is what we will use in our experiments, although in 
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principle almost any prediction algorithm can be adapted to testing exchange- 
ability. The conformal transducer (deterministic or smoothed) corresponding 
to the nonconformity measure (3.1) (on p. 54) will be called the NN trans- 
ducer. 

When applied to the smoothed NN transducer, the family of power mar- 
tingales (NN power martingales) might at first not look promising (Fig. 7.1), 
but if we concentrate on a narrower range of E (Fig. 7.2), it becomes clear that 
the final values for some E are very large. 

The simple mixture of NN power martingales (which will also be referred 
to as the NN SM martingale) usually ends up with more than 10l0; a typical 
trajectory is shown in Fig. 7.3. It is clear from this figure that the difference 
between the training and test sets is not the only anomaly in the USPS data 
set: the rapid growth of the NN SM martingale starts already on the training 
set. 

Figure 7.3, as well as Figs. 7.5, 7.6, 7.8 referred to below, are affected by 
statistical variation (since the outcome depends on the random numbers 
actually generated), so the precise values given in the captions to those figures 
should not be taken too seriously. (As always in this book, we report results 
obtained by setting the initial state of the MATLAB pseudorandom number 
generator to 0.) 

If p, are output by the deterministic NN transducer, we refer to (7.5) as 
the NN SM supermartingale. As Fig. 7.4 shows, the growth rate of the latter 
is slightly slower than that of its randomized counterpart. 

The result for a randomly permuted USPS data set is shown in Fig. 7.5. 
A low final value (about 1%) results from the NN SM martingale's futile 
attempts to gamble against an exchangeable sequence; to make possible spec- 
tacular gains against highly non-exchangeable sequences such as the USPS 
data set, it has to underperform against truly exchangeable sequences. 

Tracking the best power martingale 

The simple mixture of the previous subsection has a modest goal; the best it 
can do is to approximate the performance of the best power martingale. In this 
section we will see that it is possible to "track" the best power martingale, so 
that the resulting performance considerably exceeds that of the best "static" 
martingale (7.4). 

We first generalize (7.4) as follows: for each E = E ~ E Z  a . . E [O, 1Iw, we set 

For any probability distribution p on [O, 1Io0, define 
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Fig. 7.2. The final values given in Fig. 7.1 for a narrower range of the parameter E 
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Fig. 7.1. The final values log,, Mi&,, on the logarithmic (base 10) scale, attained 
by the NN power martingales M:), 0 5 6 5 1, on the USPS data set 
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Fig. 7.3. On-line performance of the NN SM martingale on the USPS data set. The 
growth is shown on the logarithmic (base 10) scale: log Mn is plotted against n. The 
final value attained is 2.18 x 10'' 

Fig. 7.4. On-line performance of the NN SM supermartingale on the USPS data 
set. The final value is 9.13 x lo8 
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Fig. 7.5. On-line performance of the NN SM martingale on a randomly permuted 
USPS data set. The final value is 0.0117 

It is convenient to specify p in terms of the distribution of the coordinate 
random variables E, (but of course, since we integrate over p, this does not in- 
volve any extra randomization; in particular, the mixture (7.7) is deterministic 
if p, are generated by a deterministic conformal transducer). One possible p 
is generated by the following Sleepy Jumper automaton. The states of Sleepy 
Jumper are elements of the Cartesian product {awake, asleep) x [0, 11. Sleepy 
Jumper starts from the state (asleep, 1); when he is in a state (s, E), his tran- 
sition function prescribes that: 

0 if s = asleep, he moves to the state (awake, E) ("wakes up") with proba- 
bility R (R E [O,1] is one of two parameters of the automaton) and stays 
in the state (asleep, E) with probability 1 - R; 

0 if s = awake, he moves to the state (S,Z), where E and 2 are generated 
independently as follows: = E with probability 1 - J ( J  E [O, 11, the 
"probability of jumping", is the other parameter) and Z is chosen randomly 
from U with probability J ;  3 = awake with probability 1-R and 3 = asleep 
with probability R. 

The output of the Sleepy Jumper automaton starting from (sl, Z1) = 
(asleep, 1) and further moving through the states (s2, &), (s3, C3), . . . is 
the sequence €1, €2 , .  . . , where 

E, if s, = awake 
En := 

1 otherwise. 
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The probability distribution p of €1, € 2 , .  . . generated in this way defines, 
by (7.7), a randomized exchangeability martingale (or exchangeability super- 
martingale), which we call the Sleepy Jumper martingale (resp. Sleepy Jumper 
supermartingale). If p, are produced by the NN transducer (smoothed or de- 
terministic, as appropriate), we refer to the Sleepy Jumper martingale as the 
NN S J  martingale and we refer to the Sleepy Jumper supermartingale as the 
NN S J  supermartingale. 

Figures 7.6 and 7.7 show the performance of the NN SJ martingale and 
supermartingale for parameters R = 0.01 and J = 0.001. When applied to 
the randomly permuted USPS data set, the NN SJ martingale's performance 
is as shown in Fig. 7.8. One way to improve the performance against an 
exchangeable data set is to decrease the jumping rate: if J = 0.0001, we obtain 
a much better performance (Fig. 7.9), even for an NN SJ supermartingale. It is 
easy to see the cause of the improvement: when J = 0.0001, the p-measure of 
supermartingales (7.6) that make no jumps on the USPS data set (or any other 
data set of the same size) will be at  least 0 . 9 9 9 9 ~ ~ ~ '  > e-l. The performance 
on the original USPS data set deteriorates (Fig. 7.10) but not drastically. 

Of course, there are other ideas that can be used when combining (7.6); 
e.g., it would be natural to allow 6 not only to make occasional random jumps 
but also to drift slowly. 

Remark The approach of this section is reminiscent of "tracking the best 
expert" in the theory of prediction with expert advice. A general "Aggregating 
Algorithm" (AA) for merging experts was introduced in Vovk 1990; in the 
context of this section, the experts are the power martingales and the mixing 
operation (7.5) plays the role of (and is a special case of) the AA. Herbster and 
Warmuth (1998) showed how to extend the AA to "track the best expert", 
to try and outperform even the best static expert. Vovk (1999) noticed that 
Herbster and Warmuth's algorithm ((7.7) in the present context) is in fact a 
special case of the AA, when it is applied not to the original experts (in our 
case, (7.4)) but to "superexperts" (in our case, (7.6)). 

7.2 Low-dimensional dynamic models 

In Chaps. 2-6 we considered an oversimplified stochastically static picture of 
exchangeable environment. This picture is perhaps more useful as a building 
block for modeling reality rather than as a potential model. 

In traditional statistics the standard building block for statistical models 
is random noise (such as the independent No,,z random variables ti in (2.37) 
on p. 35; as we explain in the next chapter, this model does not require the 
assumption that the xi are exchangeable). Random noise is stochastically 
static, but can be used as a component of dynamic models (such as (2.37) 
with, say, xi := (1, i, i2)'; the components of w are the dynamic parameters of 
this model). In typical cases we have a finite-dimensional structure combined 
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Fig. 7.6. On-line performance of the NN SJ martingale with parameters (R, J) = 
(I%, l%o) on the USPS data set. The final value is 4.71 x 10'' 

Fig. 7.7. On-line performance of the NN SJ supermartingale with parameters 
(I%, l%o) on the USPS data set. The final value is 1.01 x 10" 
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Fig. 7.8. On-line performance of the NN SJ martingale with parameters (I%, l%o) 
on the randomly permuted USPS data set. The final value is 0.0142 

Fig. 7.9. On-line performance of the NN SJ supermartingale with parameters 
(I%, l%oo) on the randomly permuted USPS data set. The final value is 0.646 



180 7 Beyond exchangeability 

Fig. 7.10. On-line performance of the NN SJ supermartingale with parameters 
(I%, l%oo) on the USPS data set. The final value is 1.48 x 10'' 

with a low-dimensional noise (depending on just one parameter, a, in the case 
of (2.37)). 

The theory developed in the previous chapters and in 57.1 allows us to 
replace the low-dimensional noise with a sequence of random elements about 
which we assume exchangeability but nothing else. We assume the existence 
of a "detrending transformation" which maps examples (xi, yi) into an ex- 
changeable sequence (in the case of (2.37), such a detrending transformation 
is (xi, yi) H (yi - w . xi)). The detrending transformation is assumed to be 
known except for the value of a parameter 8 E Q. Using the methods of the 
previous section, we can get rid of the values of 8 that do not lead to an 
exchangeable sequence; if the set of remaining 0 is small enough, we can use 
the methods of conformal prediction developed in Chaps. 2-4. 

As a simple example, imagine a data set containing information about 
house sales, where each example has the agreed house price as the label and 
some characteristics of the house and the area as the object (for examples 
of such characteristics, see the description of the Boston Housing data set 
in Appendix B). If the house prices have been collected over a long period 
of time with a constant but unknown inflation 8, we cannot assume that 
the data set itself is exchangeable, but the assumption of exchangeability 
might become more realistic after each house price yi is multiplied by e-Ot<, 
ti being the time of the transaction. Replacing each label yi with e-Otiyi is 
then a suitable detrending transformation. In this example we have a low- 
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dimensional dynamics (depending on just one parameter, 8) superimposed 
on a high-dimensional random core (the exchangeable sequence of detrended 
house prices). 

Of course, the relevant notion of validity for dynamic models will be differ- 
ent from the notion of validity used in the previous chapters. As new examples 
are processed, we reject more and more 8 E O as unlikely, and the prediction 
sets output by our prediction algorithms are required to be valid only with 
respect to the remaining 8. 

Formally, a dynamic model based on exchangeability is specified by a para- 
metric detrending transformation, which is a sequence of measurable functions 

where n = 1,2, .  . . and Z' is a measurable space called the detrended example 
space (usually Z' = Z). We say that a probability distribution P on Z" agrees 
with the parametric detrending transformation if there is a parameter value 
8 E Q such that the random sequence 

where zl, z2,. . . are generated from P ,  is exchangeable. 
Once we know how to produce valid (exactly or conservatively) predictions 

under the assumption of exchangeability and we know how to test exchange- 
ability, it is easy to produce predictions in the dynamic model that are conser- 
vatively valid in a natural sense. For simplicity of notation we only consider 
deterministic confidence predictors. 

Fix positive constants E and 6, a parametric detrending transformation 
(F,), as above, a nonnegative exchangeability martingale S for the example 
space Z' satisfying So = 1, and, for each 8 E O, a nonconformity measure 
(AL')) for the example space Z'. The dynamic conformal predictor determined 
by E ,  6, (F,), S, and (AL')), is defined by the equation 

where, for any y E Y and 8 E Q, 

a y is not included in 
ri9'(x1,y1,...,xn) 

if ' ze,y > 1 Sn (z4),...,zn-1, n ) - 16 

where 
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y is not included in (7.8) if 

where 

(cf. (2.19) on p. 26); 
0 y is included in (7.8) otherwise. 

We will use the notation errz6(r)  for the indicator of error at  trial n. To 
simplify the statement of the following proposition, we will consider the prob- 
ability space that contains not only the sequence of examples 21, 22,. . . but 
also a sequence of random numbers T I , T ~ , .  . . distributed as Uoo and inde- 
pendent of zl, 22, . . . . 
Proposition 7.1. Each dynamic conformal predictor r determined by E, 6, 
(Fn), S, and (A;?), as defined above, is conservative in the following sense. 
Suppose the data sequence 21,22,  . . . is generated by a probability distribution 
P that agrees with the parametric detrending transformation (Fn). There exists 
a sequence of independent Bernoulli random variables J,, with parameter E 

such that 
V n  : er@(r) 5 Jn 

outside an  event of P-probability 6. 

Proof. Fix any parameter value 8 such that Z ; , Z ~ ,  . . . , where 

is exchangeable. Define Jn as the indicator of the event 

where a:'y are defined by (7.10) (event (7.11) is the smoothed counterpart of 
(7.9)) and apply Doob's inequality (sA.6). 0 

7.3 Islands of randomness 

In this section we assume that instead of a comprehensive theory explaining 
all observations we only have a patchwork of theories each explaining only 
a relatively small piece of the observed data sequence. We will discuss only 
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the simplest case where each of the "local theories" is just the hypothesis of 
randomness applied to a subsequence of the full data sequence. We first prove 
a simple mathematical result about the conservative validity of conformal 
predictors in this case, and then briefly discuss how this result applies to 
the prediction of Markov sequences (we will return to the topic of Markov 
sequences in the next chapter). 

A sufficient condition for asymptotic validity 

The random subsequences about which the assumption of randomness is made 
will be chosen in a "predictable" manner, in the spirit of von Mises's subse- 
quence selection rules (see, e.g., Shafer and Vovk 2001, 52.3). Formal def- 
initions will use filtrations to formalize the intuitive notion of information 
available at different times (cf. 5A.6). 

The observed examples z, = (x,, y,), n = 1,2,. . . , are random elements, 
taking values in the example space Z := X x Y (with xn and y, taking 
values in X and Y,  respectively), defined on an underlying probability space. 
Let F0 C Fl C F2. .  . be a filtration on this probability space such that 
the sequence x, is predictable and the sequence y, is adapted, w.r. to this 
filtration. (In the sequel, "w.r. to this filtration" will be omitted.) Intuitively, 
Fn-l is the information available when making prediction for the label y,; the 
requirement that the sequence 3, should be increasing means that nothing is 
ever forgotten, and the requirement that x, be predictable and y, be adapted 
means that zl, . . . ,zn-1, x, are known when making the prediction for y,. 
When we are interested in randomized predictors, X is interpreted as the set 
of extended objects. 

Let K be a finite or countable set (indexing the subsequences of zl, 2 2 , .  . . 
we are going to consider) and, for each k E K, let v:, v!, . . . be a predictable 
sequence of binary random variables, taking values in (0, 1). Intuitively, v! = 
1 means that we include the example z, in the subsequence indexed by k. 
We will assume that each example belongs to no more than one subsequence: 
CkEK vi  5 1, for all n = 1,2,. . . . 

Let zf stand for the example z, where n is defined by the requirements 

if such an n exists (zf is undefined if it does not exist). Therefore, zf, z!,. . . 
is the kth subsequence (infinite or finite) of the full data sequence zl, 2 2 , .  . . . 
Remark The framework of this section is closely related to the framework 
in which Mondrian predictors are analyzed (see Chap. 4 and, especially, the 
next chapter). A Mondrian taxonomy is also a way of splitting the full data 
sequence into subsequences; the decision whether z, is included depends, how- 
ever, on n and zn rather than on zl , . . . , 2,- l, x, (and whatever extra infor- 
mation may be encoded in Fn-l). 
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Let 
n 

be the number of examples among 21,. . . , z, that are covered by the subse- 
quences, and let 

n 

a n : = { k E K : E u : > o  i= 1 

be the number of subsequences that started before or at trial n. 
We assume that the examples within each subsequence zf ,z.$,. . . are inde- 

pendent and identically distributed. Let r be a confidence predictor (such as 
a conformal predictor or a smoothed conformal predictor); running a different 
copy of r within each zf , z.$, . . . , we obtain another confidence predictor F .  
Formally, FE(xl, yl, . . . , x,) is defined as follows: 

0 if vk = 0 for all k E K, set ~ ( X ~ , ~ I , . . . , X ~ )  := Y; 
otherwise, set 

where k is such that vk = 1. 

As usual, Err;(F) stands for the number of errors made by the composite 
predictor at significance level E up to (and including) trial n. The following 
proposition (proved in the next section) asserts that the composite predictor is 
asymptotically valid unless the number of random subsequences is very large. 

Proposition 7.2. Suppose that, in the notation introduced above, the exam- 
ples within each subsequence z,k, z.$, . . . are independent and identically dis- 
tributed. If a confidence predictor r is  exact, the event 

has probability one for each 6 E (0,l). I f  I' is conservative but not necessarily 
exact, (7.12) will continue to hold i f  "lim " is replaced by "lim sup " and " = E " 
is replaced by " 5 6". 

Markov sequences 

One of the simplest applications of Proposition 7.2 is to sequences generated 
by Markov chains. For the definition of Markov chains, see, e.g., Shiryaev 1996 
(81.12 and Chap. VIII). 

Consider a Markov chain with a finite set of states Z and take the observed 
sequence of its states as the sequence of examples zl, 2 2 , .  . . . Set K := Z, 
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for n = 2,3,. . . , and vf := 0 for all k. In other words, the kth random 
subsequence consists of the examples z, coming after 2,-1 = k; zl is the only 
example that does not belong to any random subsequence. Since I, = n - 1 
and a, 5 IZI, Proposition 7.2 is applicable, and so will be asymptotically 
exact for any smoothed conformal predictor T; for deterministic conformal 
predictors T we will have asymptotic conservative validity. 

Prediction of Markov chains will also be considered, from a different point 
of view, in Chap. 8. There we will construct valid, not only asymptotically 
valid, confidence predictors for Markov chains. 

7.4 Proof of Proposition 7.2 

A natural idea is to use Hoeffding's inequality, but the difficulty (familiar from 
the previous chapter) is that the number of examples among zl, . . . , z, in the 
kth subsequence will be random, and the inequality requires the number of 
examples to be deterministic. We will have to use the fact that (A.12) (on 
p. 288) is a supermartingale directly. 

Fix a significance level E E (0,l); we will omit the index E. For each k, let 

be the number of examples 21,. . . , z, included in the kth subsequence, and 
let 

n 

be the number of errors made by on those of the first n examples 21,. . . , z, 
that belong to the kth subsequence. (Less formally, ~ r r k  is the number of 
errors made by the kth copy of r on the examples zl, . . . , z,.) 

Since a, depends on n only through I,, we can introduce a (random) 
function A that maps I, to a,; we will write AI for A(I). Without loss of 
generality we assume that I, = n, omitting the examples z, that do not 
belong to any subsequence. 

We first consider the case where the confidence predictor I' is conservative. 
As explained in sA.7 (see (A.12) on p. 288), the sequence of random variables 

where K. is a positive rational constant and 
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is a supermartingale. Since their combination 

where ki are the indices of the subsequences in the order of their first appear- 
ance' and W(K) are positive weights such that 

is also a supermartingale, Doob's inequality (see fjA.6) implies that the ran- 
dom variable C := sup, IM,I is finite with probability one. Therefore, with 
probability one there exists a C < oo such that 

for all n and k. Taking the logarithm of both sides and summing over the A, 
indices k of the subsequences that are present in zl, . . . , z,, we obtain 

where d ( ~ )  := ln(C/w(~)) and S, := ~ r r , ( p )  - en. Therefore, 

Err, ( F )  K An(21nAn+d(~))  
1 ~ + ~ +  

n ~n 

Letting n --+ oo and then K --+ 0, we obtain that 

Err, (I;) 
lim sup - 5 6 

n+w 77. 

provided A, In A, = o(n). The last condition follows from A, = o(n/ Inn): 
indeed, if A, < 6n/ In n for some 6 > 0 from some n on, then (using the fact 
that a In a is a strictly increasing function of a for large a) 

from some n on. This proves the second statement of the proposition. 

 h he formal inductive definition is: kl is defined by the requirement v;' = 1; ki, 
i = 2 ,3 , .  . . , is defined by the requirements that ki $ { k ~ ,  . . . , ki-1) and there exists 
annsuchthat v$ = 1 and v; = 0for all j = 1 ,..., n-1 and allk $ {kl ,..., ki-1). 
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Let us now assume that I' is not only conservative but also exact. Taking 
K negative, we in the same way prove that 

~ r r ,  ( p )  
lim inf - 
n--too n L E 

provided A, = o(nl1nn). Combining (7.13) and (7.14), we obtain (7.12). 
In conclusion, we will explicitly give a definition that is not quite standard 

but was used in stating the proposition. The random elements, taking values 
in a measurable space Z, in a sequence C1, t, . . . of random length (possibly 
infinite) are independent and identically distributed if there is a probability 
distribution Q on Z such that, for each n = 1,2, .  . . , the conditional distri- 
bution of Cn given that cl,. . . , Cn exist and given the values of 51,. . . , Cn-l is 

Q- 

7.5 Bibliographical remarks 

In 57.1 we follow mainly Vovk et al. 2003b. Before that paper, it was not even clear 
that nontrivial exchangeability supermartingales exist; we saw that they not only 
exist, but can attain huge final values on a benchmark (USPS) data set starting 
from 1 and never risking bankruptcy. 

Definition (7.4) is based on the procedure suggested in Vovk 1993 ($9). 
The definition of dynamic models based on exchangeability given in 57.2 is moti- 

vated by Barnard's (1977) pivotal inference (the idea of using pivotals was suggested 
to him by Fisher; see DeGroot 1988, p. 202). For references to related literature, see 
Dawid and Stone 1982 (especially Fraser's comment). 

The proof in $7.4 is similar to the many martingale proofs in Shafer and Vovk 
2001. 



On-line compression modeling I: conformal 
prediction 

We know that each conformal predictor is automatically valid when used in 
the on-line mode and provided that the data sequence is generated by an 
exchangeable distribution. In this chapter we state a more general result re- 
placing the assumption of exchangeability of the data-generating distribution 
by the assumption that the data agrees with a given "on-line compression 
model"; the exchangeability model is just one of many interesting models 
of this type. This chapter's result is a step towards implementation of Kol- 
mogorov's program for applications of probability; in particular, the concept 
of on-line compression model is an on-line version of the concept considered 
by Kolmogorov (and is closely connected to Martin-Lof's repetitive structures 
and Freedman's summarizing statistics). 

In $8.1 we define the on-line compression models, which include, besides 
the exchangeability model, the Gaussian model, the Markov model, and many 
other interesting models. An on-line compression model (OCM) is an automa- 
ton (usually infinite) for summarizing statistical information efficiently. It is 
usually impossible to restore the statistical information from the OCM's sum- 
mary (so OCM performs lossy compression), but it can be argued that the only 
information lost is noise, since one of our requirements is that the summary 
should be a "sufficient statistic". In 58.2 we construct conformal transducers 
for an arbitrary OCM and state a simple theorem (proved in 88.7) showing 
that the confidence information provided by conformal transducers is valid; 
this theorem generalizes the validity result of Chap. 2. We then briefly remind 
the reader how conformal transducers are used for confidence prediction. In 
58.3 we describe an alternative language for on-line compression modeling; it 
is based on Martin-Lof's notion of repetitive structure and is very convenient 
when specific models are discussed. In the following three sections, 58.4-8.6, 
we consider three interesting examples of on-line compression models: ex- 
changeability, Gaussian and Markov models. In $8.8 we discuss the origins of 
the idea of on-line compression modeling and of specific on-line compression 
models. 
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8.1 On-line compression models 

We are interested in making predictions about a sequence of examples 
zl, zz, . . . output by Reality. Typically we will want to say something about 
example z,, n = 1,2,. . . , given the previous examples zl, . . . ,z,-1. In this 
section we will discuss an assumption that we might be willing to make about 
the examples, and in the next section the actual prediction algorithms. 

An on-line compression model (OCM) is a 5-tuple 

where: 

C is a measurable space called the summary space; its elements are called 
summaries; E C is a summary called the empty summary; 
Z is a measurable space from which the examples zi are drawn; 
F,, n = 1,2, .  . . , are measurable functions of the type C x Z -+ C called 
forward functions; 
B,, n = 1,2,. . . , are Markov kernels (see 5A.4) of the type C L, C x Z 
called backward kernels; it is required that B, be an inverse to F, in the 
sense that 

B, (~;l(a)  I o) = 1 

for each o E F,(C x Z). 

Next we explain briefly the intuition behind this formal definition and intro- 
duce some further notation. 

An OCM is a way of summarizing statistical information. At the beginning 
we do not have any information, which is represented by the empty summary 
a0 := 0. When the first example zl arrives, we update our summary to 
01 := Fl(ur), zl), etc.; when example z, arrives, we update the summary to 
a, := Fn(on-l,z,). This process is represented in Fig. 8.1. Let t, be the 
nth statistic in the OCM, which maps the sequence of the first n examples 
Zl,. . . ,zn to on: 

The value tn(zl,.  . . ,z,) is a summary of the full data sequence 21,. . . , z, 
available at  the end of trial n; our definition requires that the summaries 
should be computable on-line: the function Fn updates on-l to a,. 

Condition 3 in the definition of OCM reflects its on-line character, as 
explained in the previous paragraph. We want, however, the system of sum- 
marizing statistical information represented by the OCM to be accurate, so 
that no useful information is lost. This is reflected in Condition 4: the distri- 
bution P, of the more detailed description (on-l, z,) given the less detailed 
CT, is known, and so (a,-l,zn) does not carry any additional information 
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Fig. 8.1. Using the forward functions Fn to compute an from 21,. . . , z, 

about the distribution generating the examples zl, 22, . . . ; in other words, on 
contains the same useful information as (an-1, z,), and the extra information 
in (an-l, zn) is noise. This intuition would be captured in statistical terminol- 
ogy (see, e.g., Cox and Hinkley 1974, 52.2) by saying that an is a "sufficient 
statistic" of z,) and, eventually, of 21,. . . , zn (although this expression 
does not have a formal meaning in our present context, since we do not have 
a full statistical model (Po : 0 E 6)  at this point). 

Analogously to Fig. 8.1, we can find the distribution of the data sequence 
zl, . . . , zn from on (see Fig. 8.2): given an, we generate the pair (an-l,zn) from 
the distribution Bn(an), then we generate (an-2, ~ ~ - 1 )  from Bn-l(an-l)., etc. 
Formally, using the Markov kernels Bn(dan-l,dzn I an), we can define the 
conditional distribution Pn of 21,. . . , zn given an by the requirement that, for 
all bounded measurable functions f : Zn + R, 

the existence of such a probability distribution Pn immediately follows from 
the StoneDaniel1 theorem (see, e.g., Dudley 2002, Theorem 4.5.2). A shorter 
way to write (8.2) is 

We say that a probability distribution P on ZW agrees with the OCM 
(C, 0 ,  Z, (F,), (B,)) if, for each n and each event A C E x Z, Bn(A I a )  is a 
version of the conditional probability, w.r. to P, that (tn-l(z1,. . . , 2,-I), zn) E 
A given tn(zl,. . . ,zn) = a and given the values of zn+l, zn+2,. . . . 

We will write Cn for tn(Zn), n 2 1, and CO for (0 ) ;  the elements of En 
will be called n-summaries. Notice that Fn maps En-1 x Z to En, and the 
probability distribution Bn(o) is concentrated on x Z for all a E En. 
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Fig. 8.2. Using the backward kernels B, to extract the distribution of zl, . . . , zn 
from a, 

All our definitions and results will involve only these restrictions: of F, to 
En-1 x Z and of B, to En. 

It is sometimes convenient to use a slightly modified definition of an on-line 
compression model removing the "unused" part of C. If (E, 0 ,  Z, (F,), (B,)) is 
an on-line compression model, the corresponding reduced on-line compression 
model is ((En), 0, Z, (FA), (Bk)) (n ranging over N), where 

f l E  standing for the restriction of f to E. 

8.2 Conformal transducers and validity of OCM 

In Chap. 2, any function f of the type (Z x [0, I])* + [O, 11 was called 
a randomized transducer; it is regarded as mapping each input sequence 
( z I , T ~ ,  z2,72,. . . ) in (Z x [O, into the output sequence of p-values 
(pl,p2,. . . ) defined by p, := f (zl ,r l , .  . . , z,, r,), n = 1,2,. . . . We say that 
the randomized transducer f is exactly valid w.r. to an OCM M if the output 
p-values plp2.. . are always distributed according to the uniform distribution 
Uw on [O, 1Iw, provided the input examples 2122.. . are generated by a 
probability distribution that agrees with M and 7172 . . . are generated, inde- 
pendently of 21.22.. . , from Urn. If we drop the dependence on the random 
numbers T,, we obtain the notion of deterministic transducer. - 

Any sequence of measurable functions A, : 22,-1 x Z + R, n = 1,2,. . . , is 
called a nonconformity measure w.r. to the OCM M = (E,  0, Z, (F,), (B,)). 
The conformal transducer determined by (A,) is the deterministic transducer 
where p, are defined as 

The randomized version, called the smoothed conformal transducer deter- 
mined by (A,), is obtained by replacing (8.3) with 
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A conformal transducer in an OCM M is a conformal transducer (determin- 
istic or smoothed) determined by some nonconformity measure w.r. to M. 

Theorem 8.1. Suppose the examples zn E Z, n = 1,2,. . . , are generatedfrom 
a probability distribution P that agrees with an  on-line compression model. 
A n y  smoothed conformal transducer in that model i s  exactly valid (will produce 
independent p-values p, distributed uniformly i n  [O, l ] ) .  

As discussed in Chap. 2, conformal transducers can be used for hedged 
prediction; we will briefly summarize how this is done. Suppose each example 
z, consists of two components, x, (the object) and yn (the label); at trial n 
we are given x, and the goal is to predict yn; for simplicity, we will assume 
that the label space Y from which the labels are drawn is finite. Suppose we 
are given a significance level E > 0 (the maximum probability of error we are 
prepared to tolerate). When given x,, we can output as the prediction set 
r: C Y the set of labels y such that y, = y would lead to a p-value p, > E .  

(When a conformal transducer is applied in this mode, it is referred to as 
a conformal predictor.) If an error at trial n is defined as y, 4 Ti, then by 
Theorem 8.1 errors at  different trials are independent and the probability of 
error at each trial is E, assuming the p, are produced by a smoothed conformal 
transducer. In particular, such confidence predictors are asymptotically exact, 
in the sense that the number Err: of errors made in the first n trials satisfies 

Err: 
lim - = E a . ~ .  

n+oo n 

This implies that if the p, are produced by a deterministic conformal trans- 
ducer, we will still have the conservative version of this property, 

lim sup - Err' < - e a.s. 
n+w 72 

Finite-horizon result 

In this subsection we will state a modification of Theorem 8.1 which, although 
slightly less elegant than Theorem 8.1 itself, is mathematically stronger and 
more readily applicable (in particular, it explains why shuffling finite data 
sets, as described in 5B.4, makes smoothed conformal transducers produce 
independent p-values distributed uniformly on [0, 11). 

Theorem 8.1 is so general that it implies almost all other validity results in 
this book, but its generality also gives rise to some problems. The statement 
of the theorem is given in terms of probability distributions P that agree 
with the given OCM, but even the simplest questions about the class P of 
such P are very difficult and can at present be answered only in some special 
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cases (see, e.g., Lauritzen 1988; the exposition in that book is in terms of 
"repetitive structures", which, as explained in the next section, provide an 
equivalent language for talking about on-line compression modeling). Even the 
question whether P is non-empty is difficult (although the answer is known 
to be positive if Z is finite; see Proposition 7.1 in Lauritzen 1988, p. 75). The 
question whether P is nontrivial (i.e., whether lPl > 1) is even more difficult; 
in statistical mechanics this question appears as the question of existence of 
phase transition. Moreover, the mathematical techniques used to answer these 
questions are heavily asymptotic and seem very remote from the practice of 
machine learning. 

Fix a positive integer N ,  the horizon. An on-line compression N-model (or 
N-OCM) is defined in the same way as an ordinary OCM but with n ranging 
over the set (1,. . . , N). Statistics t, and conditional probability distributions 
P,, n = 1,. . . , N,  are defined by (8.1) and (8.2). We say that a probability 
distribution P on ZN agrees with an N-OCM (C, 0, Z, (F,), (B,)) if, for 
each n = 1,. . . , N and each event A G C x Z, B,(A I a )  is a version of 
the conditional probability, w.r. to P, that (t,-~(zl,. . . , z,-~), z,) E A given 
t,(zl,. . . , z,) = a and given the values of zn+l, . . . , z ~ .  The description of the 
family of all P that agree with the N-OCM is trivial: these are the mixtures 
of PN(. I a )  over a E CN = tN(ZN). (Indeed, each PN(- 10) agrees with the 
N-OCM and each P that agrees with the N-OCM is J, P~( . la)P ' (da) ,  where 
P' is the image of P under the mapping tN.) 

Nonconformity measures and conformal transducers for N-OCM are de- 
fined as before, with the only difference that n now ranges in (1,. . . , N). 

Theorem 8.2. Let N E N and the examples z, E Z, n = 1,. . . , N, be gen- 
erated from a probability distribution P on zN that agrees with an on-line 
compression N-model. Any smoothed conformal transducer in that model is 
exactly valid (will produce independent p-values p,, n = 1,. . . , N, distributed 
uniformly in [0, 11). 

In particular, any smoothed conformal predictor will produce p-values dis- 
tributed as uN if the examples are generated from any conditional distri- 
bution PN(a), a E EN, in the notation introduced above. This shows that 
Theorem 8.2 indeed implies Proposition 4.10 on p. 115. 

It is clear that Theorem 8.2 implies Theorem 8.1: if a probability distri- 
bution P on Zw agrees with an OCM, the restriction of P to the first N 
examples will agree with the restriction of the OCM to the first N examples, 
and therefore, the first N p-values pl, . . . , p~ will be distributed according to 
the uniform distribution on [0, l JN;  now standard results (such as Williams 
1991, Lemma 1.6) imply that the infinite sequence pl,p2,. . . has the uniform 
distribution on [O, 1Io0. 
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8.3 Repetitive structures 

There are two equivalent languages for discussing on-line compression mod- 
eling: our on-line compression models and Martin-Lof's repetitive structures. 
The former is more convenient in the general theory, considered so far, and 
the latter is better suited to discussing specific models, which we do in the 
following sections. In this section we define repetitive structures and compare 
the two languages. 

Let C and Z be measurable spaces (of "summaries" and "examples", re- 
spectively). A repetitive structure (C, Z, (t,), (P,)) contains, additionally, the 
following two elements: 

a system of statistics (measurable functions) t, : Zn 4 C ,  n = 1,2, .  . . ; 
a a system of Markov kernels P, : C r Zn, n = 1,2, .  . . . 

These two elements are required to satisfy the following consistency require- 
ments: 

Agreement between P, and t,: for each a E tn(Zn), the probability dis- 
tribution P,(. I a )  is concentrated on the set t i l ( ~ ) ;  

On-line character of t,: for all integers n > 1, t,(zl,. . . , z,) is determined 
by tn-l(zl,. . . , z,-l) and z,, in the sense that the function t, is measur- 
able w.r. to the a-algebra generated by tnbl and z,; 

Consistency of Pn: for all integers n > 1 and all cn E tn(Zn), P,-1(. 1 an-1) 
should be a version of the conditional distribution of 21,. . . ,z,-l when 
21,. . . , Z, is generated from P,(dzl,. . . ,dz, I a,) and it is known that 
t n - l ( ~ l , .  . . , 2,-1) = an-1 and z, = z (an-l ranging over t,-l(Zn-l) 
and z over Z). 

The reduced version of a repetitive structure (C, Z, (t,), (P,)) is defined 
to be ( (En) ,  Z, (tk), (PA)), where En := tn(Zn), tk is the same as t, but of 
the type Zn 4 C,, and PA := Pnlc,. 

The on-line character of t, can be restated as follows: there exists a se- 
quence of measurable functions F, : x Z --i En, n = 2,3,. . . , such 
that 

tn(z1,. . . , zn)  = F n  (tn-l(z~,.. . .  ,zn-l),zn) (8.5) 

for all n and 21,. . . , z, E Z. This makes repetitive structures more similar to 
on-line compression models; the full equivalence is established in the following 
proposition. 

Proposition 8.3. If M = ((En), 0 ,  Z, (F,), (B,)) is a reduced on-line com- 
pression model, then M' := ((C,), Z, (t,), (P,)) (see (8.1) and (8.2)) is a re- 
duced repetitive structure. If M = ((En), Z, (t,), (P,)) is a reduced repetitive 
structure, a reduced on-line compression model M' = ((C,), 0, Z, (F,), (B,)) 
can be defined as follows: 

0 is, e.g., the empty set; 
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Fn are the functions from (8.5), n = 2,3,. . . , and Fl (0 ,  z) := tl(z) for all 
z E Z ;  
B, (da,-l, dz, I a,) is the image of the distribution P, (dzl , . . . , dz, I a,) 
under the mapping 

(21, . ., zn) ++ (an-1, zn), 

where 0,-1 := tn-l (21, . . . , z,-~). 

If M is a reduced on-line compression model, M" = M .  If M is a reduced 
repetitive structure, M" = M .  

8.4 Exchangeability model and its modifications 

In this section we discuss some familiar (although not defined formally so far) 
on-line compression models, viz., the exchangeability model and its modifi- 
cations; in the next two sections we will consider new models, Gaussian and 
Markov. All specific OCMs will be defined through their statistics t ,  and con- 
ditional distributions P, (i.e., through the corresponding repetitive structure, 
which will be called the "repetitive-structure representation" of the OCM). 
For prediction, however, it will be important to move to the representation as 
an on-line compression model (the "on-line compression representation", a.s 
we will say). 

Exchangeability model 

The exchangeability model has statistics 

given the value of the statistic, all orderings have the same probability lln!. 
Remember that formally we define the set of bags 121,. . . , z,J of size n to be 
the power set Zn equipped with the a-algebra of symmetric (i.e., invariant 
under permutations of components) events; the probability distribution on 
the orderings is given by z,(~), . . . , z,(,), where zl, . . . , z, is a fixed ordering 
and n is a random permutation (each permutation is chosen with probability 
lln!). 

It is easy to see what the on-line compression representation of the ex- 
changeability model is. The function Fn : (0,-l,zn) ++ a, puts another ex- 
ample z, in the bag a,-1 producing a bigger bag a,. The probability distri- 
bution Bn(an) can be implemented as follows: draw an example z, from the 
bag a, at  random and output the pair (an-l,zn), where a,-1 is a, with z, 
removed. 

The set of probability distributions on Zw that agree with the exchange- 
ability OCM is exactly the exchangeability statistical model (Lemma A.3 on 
p. 283 shows that each exchangeable probability distribution agrees with the 
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exchangeability OCM, and Lemma A.2 immediately implies that each proba- 
bility distribution that agrees with the exchangeability OCM is exchangeable). 

It is clear that the notion of a nonconformity measure in the exchange- 
ability model is identical with that of a nonconformity measure as defined in 
Chap. 2, and so Proposition 2.4 (p. 27) is a special case of Theorem 8.1. 

Generality and specificity 

Let us say that a repetitive structure Mz. = (C2, Z, (t:), (p i ) )  is more specific 
than a repetitive structure MI = (C1, Z, (t:), (Pi)) if there exists a sequence 
of measurable functions fn : C1 + E2 such that 

t;(z1,. . . , zn) = fn(t:(tl,. . . , ~ n ) )  for all n and all data sequences 
(z1, . . . , 2,) E zn ;  
for each n and each a2 E t2(Zn), the function Pi (- I a'), a' E fil (a2), is 
a version of the conditional probability given that t:(zl,. . . , z,) = a' in 
the probability space (Zn, P i ( -  I a2)). 

The first condition says that the statistics t: are more complete summaries of 
the data sequence zl, . . . , zn than the statistics t: are (since a summary pre- 
serves all useful information in the data sequence, this means that t: contains 
more noise, assuming both models are accepted). The second condition says 
that the probability distributions Pi can be obtained from P: by conditioning 
on the more complete information. 

The fact that M2 is more specific than MI will be denoted Ml 5 M2, and 
will also be expressed by saying that MI is more general than M2. 

It is clear that if a probability distribution on ZW agrees with a repetitive 
structure, it will agree with a more general repetitive structure. As we know, 
a repetitive structure formalizes the assumption we are willing to make about 
Reality, and this assumption weakens as we replace a repetitive structure by 
a more general structure. 

For simplicity, we did not state some results of Chap. 2 in their full gener- 
ality. It is true that inductive and Mondrian conformal predictors are valid in 
the exchangeability model. But more than this is true: they are valid under 
weaker models, which will be considered in the following subsections. 

Inductive-exchangeability models 

As in $4.1, let ml,  m2, . . . be a strictly increasing sequence, finite or infinite, of 
positive integers; if the sequence is finite, say ml,  . . . , m,, we set m,+1 := m. 
For each such sequence ml ,  m2, . . . we can define the corresponding inductive- 
exchangeability model (C, Z, (t,), (P,)), where: 

0 C is the set of finite sequences of bags of elements of Z; 
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the summary t,(zl,. . . , z,) is defined as the sequence 

where k is such that mk < n L mk+l; 
for each a E C,, P,(- 1 a )  is defined as the uniform probability distribution 
on the set of ml! - .  - mk!(n - mk)! (with k defined as in the previous item) 
sequences obtained from a by ordering its bags in different ways. 

It is clear that inductive conformal predictors are conformal predictors in 
the inductive-exchangeability model (although not all conformal predictors 
in the inductive-exchangeability model are inductive conformal predictors); 
therefore, Proposition 4.1 is a special case of Theorem 8.1. 

It is also clear that each inductive-exchangeability model is more general 
than the exchangeability model with the same example space. (The role of 
the hyphen is to emphasize that inductive-exchangeability models are not in- 
stances of exchangeability models, unless the sequence ml , m2, . . . is empty.) 
It is easy to see that an inductive-exchangeability model is strictly more gen- 
eral if ml,  m2,. . . is not empty: if, e.g., ml ,  m2,. . . has only one term m, 
any product QT x Q F ,  where Q1,Q2 E P(Z), will agree with the inductive- 
exchangeability model, whereas it will agree with the exchangeability model 
only if Q1 = Q2. The inductive-exchangeability model does not appear to be 
an interesting generalization of the exchangeability model (indeed, if Q1 # Q2, 
the inductive conformal predictor will be still valid, but its efficiency is likely to 
suffer), but in the next subsection we will see that Mondrian-exchangeability 
models can be quite useful. 

Mondrian-exchangeability models 

Following 84.5, fix a taxonomy x : N x Z --+ K. The corresponding Mondrian- 
exchangeability model (C, Z, (t,), (P,)) is defined as follows: 

C is the Cartesian product of K* and the family of all mappings of the 
type K -+ z(*): 

C := K* x ( z ( * ) ) ~  ; 

the summary t,(zl, . . . , z,) is defined as the sequence 

( ( ( 1 ,  I ) ,  . . . , x(n, h)) , (k E K - Zzi : i E (1,. . . , n}, n(i, q) = kj)) ; 

let a E En consist of a sequence of categories kl, . . . , k, and a family of 
bags (Bk : k E K) of examples, such that each k E K occurs lBkl times in 
the sequence kl, . . . , k,; P,(- I a )  is then defined as the uniform probability 
distribution on the set of 
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sequences 21,. . . , z, obtained from a by ordering its bags in different ways 
and putting the elements of each ordered bag Bk consecutively in the 
places occupied by k in the sequence kl, . . . , k,. 

Proposition 4.10 is a special case of Theorem 8.2: indeed, the latter shows that 
pl ,  . . . , p ~  are distributed as UN given the observed categories kl, . . . , kN. 

It is easy to see that the notion of generality for repetitive structures 
(p. 197) as applied to Mondrian-exchangeability models agrees with the notion 
of generality for Mondrian taxonomies (p. 116). 

Let us now discuss, for concreteness, what we called "label-conditional" 
MCPs in Chap. 4. To see that the Mondrian-exchangeability model is less 
restrictive in an important way than the exchangeability model, consider (fol- 
lowing Ryabko 2003) the problem of hand-written character recognition. Sup- 
pose the stream of characters to be recognized comes from the user writing a 
letter. The exchangeability model is grossly wrong: the sequence of characters 
in a typical letter is far from exchangeable. If, however, we define the cate- 
gory of an example to be its label, the Mondrian-exchangeability model can 
be close to being correct: different instances of the character "a", for example, 
can be almost exchangeable (even conditionally on the other characters and 
the way they are represented). 

Mondrian-exchangeability models add another dimension to the usual 
question "what is exchangeable with what?" As in the case of Venn predic- 
tors, we want, on one hand, our predictions to be as specific as possible (which 
creates pressure on the categories to become smaller) and, on the other hand, 
we need enough statistics for each category (which resists the pressure). The 
pressure slightly increases, since smaller categories mean a weaker assumption 
about Reality. 

8.5 Gaussian model 

The inductive-exchangeability and Mondrian-exchangeability models are gen- 
eralizations of the exchangeability model; we will now go in the other direction, 
considering a stronger model than exchangeability. 

In the Gaussian model, Z := R, the statistics are 

(except that bl := O), and Pn(dzl,. . . , dzn I a,) is the uniform distribution 
on t;'(a,) (in other words, it is the uniform distribution on the (n - 2)- 
dimensional sphere in Rn with centre (F,, . . . , Fn) E Rn of radius -8, 
lying inside the hyperplane i ( z l  + - .  . + z,) = 2,). 
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It is clear that there are many possible representations of essentially the 
same model; for example, we obtain an equivalent model if we replace (8.6) 
by 

Let us first find the forward functions in the on-line compression represen- 
tation of the Gaussian model. It is easy to check that the updating formulae 
for Zn and en are 

this defines the forward functions Fn. The expression for the backward kernels 
is much more complicated, and we do not give it explicitly; it can be derived 
from the fact that (8.9) below has Student's t-distribution. 

Let us now explicitly find the prediction set for the Gaussian model and 
nonconformity measure 

(it is easy to check that this nonconformity measure is equivalent, in the sense 
of leading to the same p-values, to lzn - Zn 1 ,  as well as to several other natural 
expressions, including (8.9)). Under Pn(dzl, . . . , dzn I (zn, 6,)) and assuming 
n > 2, the expression 

/Tzn;:-l 

has the t-distribution with n - 2 degrees of freedom. (This fact is proved in, 
e.g., Cram& 1946, 529.4, where it is assumed, however, that zl, . . . , zn are 
independent and have the same normal distribution. The latter assumption 
may be replaced by our assumption of the uniform distribution; for a general 
argument, see the proof of Proposition 8.4 below.) Let t a , k  be the value defined 
by P{< 2 t s , k )  = 6 with < having the t-distribution with k degrees of free- 
dom. We can see that the prediction set r: corresponding to nonconformity 
measure (8.8) is the interval consisting of z such that 

We obtained the usual prediction set based on the t-test (as in Baker 1935, 
Wilks 1941, and, implicitly, Fisher 1925); now, however, we can see that the 
errors of this standard procedure (applied in the on-line fashion) are indepen- 
dent. 

Some of the facts mentioned in this subsection will be proved in the fol- 
lowing one. 
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Gauss linear model 

We will now consider a rich extension of the Gaussian model. In the repetitive- 
structure representation (E, Z, (t,), (P,)) of the Gauss linear model the ex- 
ample space is of the regression type, Z := X x Y ,  with the label space being 
the real line Y := R and the object space being the pdimensional Euclidean 
space, X := RP. The statistics are 

(so C can be set to X* x RP x R), and Pn(. 1 an)  is the uniform probability dis- 
tribution on the sphere tzl(an) (we consider a point to be a sphere; typically 
t;l (a,) will be a point unless n > p). 

The Gaussian model in the form (8.7) is a special case (using a different 
notation, zi for yi) corresponding to p = 1 and xi restricted to xi = 1, 
i = 1,2, .  . . . Using ELl yixi rather than Ey=l yi reflects the possibility that 
yi can depend on xi. 

The probability distribution of zl, 22, . . . under the linear regression sta- 
tistical model 

~ n = w . x n + C n  7 (8.12) 

where w E RP is a constant vector and tn are independent random variables 
with the same zero-mean normal distribution, always agrees with the Gauss 
linear model. (The model (8.12) was already considered in Chap. 2: cf. (2.37) 
on p. 35.) 

Our next proposition and its proof will use the following notation: @ is 
the least squares prediction for the object xi based on the examples 21,. . . , z,; 
8, is a shorthand for 8,n-l; Xl, 1 = 1,2, .  . . , is the 1 x p matrix whose ith row 
is xi, i = 1, ..., I; and 

4 1 

is the standard estimate of the variance of the Gaussian noise Jn in (8.12) 
from the first 1 examples. 

Proposition 8.4. The conformal predictor determined by the nonconformity 
measure 

A (a, (x, Y)) := I Y  - 91 , 
where Q is the least squares prediction of the x's label y based on the examples 
summarized by u, is given, for n > p + 1 satisfying rank(Xn_l) = p, by the 
formula 

r: = [8n - tta/2,n-p-lvn, 9n + te/2,n-p-lvn] r (8.13) 
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Confidence predictor (8.13), generalizing (8.10), will be called the Student 
predictor. 

Proof. It is a standard fact (see, e.g., Stuart et al. 1999, $32.10) that (yn - 
Bn)/Vn has the t-distribution with n - p  - 1 degrees of freedom; this assumes, 
however, the standard model (8.12) rather than the uniform conditional dis- 
tribution of the Gauss linear model. Let us check that (y, - Gn)/Vn will still 
have the t-distribution with n - p - 1 degrees of freedom under the uniform 
conditional distribution. 

First note that (yn - Bn)/Vn can be rewritten so that it depends on 
yl, . . . , yn only through the n-residuals yi - 6; (i.e., residuals computed from 
all n examples 21,. . . ,zn). Indeed, a standard statistical result (Montgomery 
et al. 2001, (4.12)) shows that 

another standard result (Montgomery et al. 2001, (4.11); already used on 
p. 34) shows that 

Remember that Yn := (yl, . . . , y,)' is the vector of the first n labels and 
let Yn := (By, . . . ,BR)' be the vector of the first n fitted values. According 
to the geometric interpretation of the least squares method in the standard 
model (8.12) (see, e.g., Draper and Smith 1998, Chaps. 20-21), the vector of 
n-residuals is distributed symmetrically around Pn in the space orthogonal to 
the estimation space {Xnw : w E RP). On the other hand, according to (8.11) 
and the definition of Pn, Pn(- I gn) is the uniform distribution on the sphere, 
of radius equal to the length of the vector of n-residuals, in the hyperplane 
orthogonal to the estimation space and passing through the projection Pn of 
Yn onto the estimation space. Since the ratio (y, - Bn)/Vn (expressed through 
the n-residuals yi -6F) does not change if all n-residuals are multiplied by the 
same positive constant (and, therefore, its distribution does not change if the 
random vector of n-residuals is scaled to have a given length), we may replace 
the normal distribution of (8.12) by our uniform distribution Pn(. I a,). 

The proof will be complete if we show that 

is a bona fide nonconformity measure which monotonically increases as 1 yn - 
BnI increases for any fixed an := tn(zl,.  . . ,zn). TO see that lyn - BnI/Vn can 
be expressed through an-1 := tn-1 (XI, yl, . . . , xn- 1, yn-1) (see (8.11)) and 
Zn = (xn, yn), it suffices to remember that 
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(see (2.29) on p. 30) and notice that, in accordance with (8.14) and (8.15), Vn 
can also be expressed through on-1 and 2,: 

where Hn = Xn(XAXn)-lX& is the hat matrix (2.31) (p. 31). Finally, we 
deduce from (8.14) and (8.15): 

where C > 0 and c are constants (for a fixed on), f f  means "changes in the 
same direction as", and f J, means "changes in the opposite direction to". 

The prediction interval (8.13) is standard (see, e.g., Montgomery et al. 
2001, (3.54)), but our results add the usual extra feature: the independence 
of errors in the on-line setting. 

Remark The methods of this subsection are applicable to time series, al- 
though only to the simplest ones: e.g., if 

n - a  
2/n = f(n) +cos-+Jn 

T 

where f (n) is a polynomial of a known degree p, T is a known constant (the 
period of the seasonal component), and Jn are independent and identically 
distributed zero-mean normal random variables, we can set 

and use formula (8.13). Constructing conformal predictors in more interesting 
cases would require new methods. 

Student predictor vs. ridge regression confidence machine 

In this subsection we will investigate empirically the efficiency of RRCM. The 
idea is to run both the Student predictor and RRCM on a data set generated 
from an exchangeable probability distribution in the linear regression model 
(8.12). The RRCM "does not know" that the labels are generated from the 
simple parametric model (8.12), and so one would expect the RRCM to work 
worse than the Student predictor, which is tuned to (8.12)'. An interesting 

'Of course, the situation is somewhat symmetrical in that the Student predic- 
tor "does not know" the data is exchangeable, but (8.12) appears more useful in 
predicting the labels than the exchangeability. 
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question is "how much worse?" We will see that the difference is surprisingly 
small for the Boston Housing data set, suitably "shuffled" (cf. 5B.4) to conform 
to the Gauss linear and exchangeability assumptions. 

First we discuss the details of "shuffling". Suppose we have N examples 
(x,,y,), n = 1,. . . , N,  with x, E RP and y, E R, and we would like to 
generate another sequence of N examples (xk, y;) = (x,, y;) from the uniform 
distribution PN(.~UN),  where ON = tN(xl ,  yl, .  . . , X N ,  y ~ )  is defined by (8.11). 
The procedure is: 

Let X be the N x p matrix with rows x;, n = 1,. . . , N,  and Y be the 
column-vector (yl , . . . , yN)' of length N. (We assume rank X = p.) 
Compute Yl := HY, where H := X(X'X)-lX' is the hat matrix. 
Compute the linear combination Y2 with independent No,l coefficients of 
the vectors in an orthonormal basis of the linear space {y E RN : X'y = 0). 
(We will assume that llYzll # 0; this will be the case with probability one 
when N > p.) 
Set 

and output the nth component of Y* as y:, n = 1, . . . , N 

Since is the projection of Y onto the estimation space (the subspace of lRN 
generated by the columns of X) and Y2/11Y21( is a random vector of norm 1 
in the orthogonal complement in lRN of the estimation space, the validity of 
our procedure follows from IIY*ll = IIYII; the latter is obvious since Yl and Y2 
are orthogonal. 

We first randomly permuted the elements of the Boston Housing data 
set (this step can be called "exchangeability shuffling") and then applied the 
above procedure to the resulting sequence ("Gauss linear shuffling"). We then 
run the RRCM~ and the Student predictor in the on-line fashion on this 
doubly shuffled data set; the results are shown in Figures 8.3 and 8.4, in the 
same format as in Chap. 2. On both graphs, the solid line shows, for each 
n = 1,. . . ,506, the median ~ , 9 ~ ~  of the widths of the convex hulls co r,lW of 
the prediction sets rjg", i = 1,. . . , n; similarly, the dashed line shows 
and the dash-dot line shows M,80W. (In the case of the Student predictor, 
I'; are convex, and so tor; = r;.) The cumulative error lines look as usual 
(Figs. 8.5 and 8.6). The RRCM does not look much worse (and, surprisingly, 
one part of the graph for RRCM looks even better - the one corresponding 
to small n and confidence level 80%). 

 he ridge coefficient for the RRCM was a = 1 and each attribute was linearly 
scaled to span the interval [-I, 11 (or [O, 01, if its maximum and minimum values 
coincided). 
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- - median width at 95% 
- .  median width at 80% 

Fig. 8.3. The on-line performance of the Student predictor on the doubly shuffled 
Boston Housing data set 

8.6 Markov model 

We have already considered two classes of on-line compression models that 
go beyond exchangeability in interesting ways: the Mondrian-exchangeability 
models of $8.4 and the Gauss linear models of $8.5. In this section we will con- 
sider a third class of non-exchangeable models (translation of the probabilistic 
notion of Markov chain into our framework). 

We are not so much interested in prediction for Markov chains per se: 
the corresponding statistical model is a regular finite-dimensional model (in 
the case of binary Markov chains, which will be our focus of attention, there 
are only two parameters to be learned: the probability of 1 after 0 and the 
probability of 1 after I) ,  and valid and efficient inductive prediction in this 
situation is easy. (Details will be given in $10.1.) But this simple example 
will demonstrate an important limitation of transductive prediction (at least, 
when it is used in the most direct way), which can well show up in more 
interesting applications. 

The unusual feature of transductive prediction when applied to Markov 
chains is an apparent efficiency/validity trade-off. The method of this section 
is different from the one used in $7.3, where we also treated Markov chains. It 
is interesting that the two methods give different results. The method of this 
section is valid in a stronger sense (the whole sequence of errors is Bernoulli), 
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Fig. 8.4. The on-line performance of RRCM on the doubly shuffled Boston Housing 
data set 

whereas the method of 57.3 appears to be more efficient. This will be discussed 
in detail at  the end of 58.8. 

In this section we always assume that the example space Z is finite (often 
binary, Z = (0, l)) .  We start by giving some basic definitions of graph theory 
in a convenient for us form. 

There are two natural variants of the notion of a directed graph; we will 
use "digraph" and "semi-Markov graph" as technical terms. A digraph with 
a vertex set V and an arc set E is given by two mappings: the tail mapping 
tail : E -t V and the head mapping head : E -t V. The digraph is drawn 
by representing each vertex by a dot and representing each arc e E E by an 
arrow leading from tail(e) to head(e). A semi-Marlcov graph with a vertex set 
V is specified by a bag of elements of V2; each element of the bag is called 
an arc. Again, a semi-Markov graph is drawn by representing each vertex by 
a dot and representing each arc (vl, v2) by an arrow from vl to v2. 

An Eulerian path in a digraph is a sequence of alternating vertices and 
... .. edges vl, el, v2, e2,. v,, en such that each ei, i = 1,. n, leads from vi 

.. to vi+l (v,+~ is understood to be vl) and the arcs el , .  ,en form an or- 
dering of E (without repetitions). This notion is standard; in this section, 
however, the following will be more useful. An Eulerian path in a semi- 
Markov graph is a sequence of vertices 211,212,. .., vn such that the bag 
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Fig. 8.5. The cumulative numbers of errors at the given confidence levels for the 
Student predictor run on-line on the doubly shuffled Boston Housing data set 

~ ( v I ,  v2), (v2, v3), . . . , (vn- 1, vn)] coincides with the bag that specifies the 
semi-Markov graph; we will say that this path is from vl to v,. 

Intuitively, the difference between diagraphs and Markov semi-graphs is 
that for the latter the arcs with the same tail and head are indistinguishable 
(for example, we do not distinguish two Eulerian paths that only differ in the 
order in which two such arcs are passed). The underlying digraph of a Markov 
semi-graph will have the same structure but all its arcs will be considered to 
have their own identity. 

The following notation for digraphs and Markov semi-graphs will be used: 
in(v)/out(v) stand for the number of arcs enteringlleaving vertex v; nu,, is 
the number of arcs leading from vertex u to vertex v. 

The Markov summary of a data sequence zl . . . z, is the following Markov 
semi-graph with two vertices marked: 

the set of vertices is Z (the state space of the Markov chain); 
the vertex zl is marked as the source and the vertex zn is marked as the 
sink (these two vertices are not necessarily distinct); 
the arcs of the Markov semi-graph are the transitions zizi+l, i = 1, .  . . , n- 
1; the arc zizi+l has zi as its tail and zi+l as its head. 

It is clear that in any Markov summary all vertices v satisfy in(v) = out(v) 
with the possible exception of the source and sink (unless they coincide), for 
which we then have out(source) = in(source) + 1 and in(sink) = out(sink) + 1. 
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I 

- errors at 80% 1 
- - errors at 95% 
- errors at 99% 1 

Fig. 8.6. The cumulative numbers of errors at the given confidence levels for RRCM 
run on-line on the doubly shuffled Boston Housing data set 

We will call a Markov semi-graph with two vertices marked as the source and 
sink a Markov graph if it satisfies this property. 

The repetitive-structure representation (C, Z, (t,), (P,)) of the Markov 
model is: 

Z is a finite set; its elements (examples) are also called states; 
E is the set of all Markov graphs with the vertex set Z; 
tn(zl, . . . , z,) is the Markov summary of the data sequence zl . . . z,; 
for each a E C,, P,(a) is the uniform probability distribution on the set 
of Eulerian paths from the source to the sink in a. 

The Markov model can also be defined directly as an on-line compression 
model (C, 0, Z, (Fn), (Bn)): 

Z is a finite set; 
C is the set of all Markov graphs with the vertex set Z extended by adding 
a new element (say, the empty set); 
Fl(O, z) is the Markov graph with no arcs and with both source and sink 
at  z; F,(a, z), n > 1, is the Markov graph obtained from a by adding an 
arc from a's sink to z and making z the new sink; 
let a I z, where a is a Markov graph and z is one of a's vertices, be the 
Markov graph obtained from a by removing an arc from z to a's sink (a  4 z 
does not exist if there is no arc from z to a's sink) and moving the sink 
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to z, and let #a be the number of Eulerian paths from the source to the 
sink in a Markov graph a; B,(a) generates (a z, sink) with probability 
#(a 1 z)/#a, where sink is a's sink and z ranges over the states for which 
a z is defined. 

Notice that any Markov probability distribution on ZW agrees with the 
Markov model. 

We will take 
&(a, z) := Bn ( ( ( 0 , ~ ) )  I Fn (a, 2)) (8.16) 

as the conformity measure (intuitively, lower probability makes an example 
less conforming). To give a computationally efficient representation of the 
conformal transducer corresponding to this conformity measure, we need the 
following two graph-theoretic results, versions of the BEST theorem and the 
Matrix-Tree theorem, respectively. 

Lemma 8.5. I n  any Markov graph a with the set of vertices V the number of 
Eulerian paths from the source to the sink equals 

where T(a) i s  the number of spanning out-trees in the underlying digraph 
rooted at the source. 

Lemma 8.6. To find the number T(a) of spanning out-trees rooted at the 
source in the underlying digraph of a Markov graph a with vertices 21,. . . , z, 
(zl being the source), 

0 create the n x n matrix with the elements ai,j = -nz+,; 
0 change the diagonal elements so that each column sums to 0; 
0 compute the co-factor of a ~ , l .  

These two lemmas immediately follow from Theorems VI.24 and VI.28 in 
Tutte 2001. To derive Lemma 8.5, notice that counting Eulerian paths from 
the source to the sink in a Markov graph reduces to counting Eulerian paths 
in the underlying digraph with an added arc from the sink to the source. 

It is now easy to obtain an explicit formula for prediction in the binary 
case Z = (0,l).  First we notice that, for n > 1, 

(all nu,, refer to the numbers of arcs in a and sink is a's sink; we set #(a 
z) = T(o  J, z) := 0 when a z does not exist). The following simple corollary 
from the last formula is sufficient for computing the probabilities B, in the 
binary case: 

B,({(a sink, sink)) I a )  = nsink,sink 

out(sink) ' 
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This gives us the following formulas for the conformal predictor in the bi- 
nary Markov model (remember that the conformity measure is (8.16)). Sup- 
pose the current summary is given by a Markov graph with ni,j arcs going 
from vertex i to vertex j (i, j E {O,l)) and let f : [O, 11 -+ [O,1] be the function 
that squashes [0.5,1] to 1: 

p if p < 0.5 
:= 1 otherwise . 

If the current sink is 0, the p-value corresponding to the next example 0 is 

and the p-value corresponding to the next example 1 is (with 010 := 1) 

If the current sink is 1, the p-value corresponding to the next example 1 is 

and the p-value corresponding to the next example 0 is (with 010 := 1) 

Figure 8.7 shows the result of a computer simulation; as expected, the error 
line is close to the straight line with the slope close to the significance level. 

In conclusion, we notice the profound difference between the formulas of 
this section and the recipe of 57.3. According to the latter, for example, we 
should have 

instead of (8.17); expression (8.19) is closer to (8.18). This will be discussed, 
at an informal level, later in 58.8 (from p. 220). 

The approach of this section works well in the case where the Markov 
chain is expected to be symmetric or close to symmetric but we want a guar- 
antee that validity will not be lost even if the Markov chain is very far from 
symmetry. (If we are certain that the Markov chain is symmetric, it is best to 
use the OCM with the statistics 

tn(zl,. . . , zn) := (({i = 1,.  . . , n  - 1 : zi # zi+l)l,zn) , 

as in Lauritzen 1988, p. 45, but this model easily reduces to the binary ex- 
changeability model for z,! := ll,,z,,+, .) 
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errors 
. . . . multiple predictions 
- . empty predictions 1 

examples 

Fig. 8.7. Conformal predictor predicting the binary Markov chain with the following 
transition probabilities: 0 is followed by 1 with probability 1% and 1 is followed by 0 
with the same probability 1%. The significance level is 2%; the cumulative numbers 
of errors, multiple, and empty prediction sets are shown 

8.7 Proof of Theorem 8.2 

First we explain the basic idea of the proof. To show that (pl, . . . ,pN) is dis- 
tributed as uN, we use the standard idea of reversing the time (see, e.g., the 
proof of de Finetti's theorem in Schervish 1995). Let P be the distribution on 
ZN generating the examples; it is assumed to agree with the OCM. We can 
imagine that the data sequence (21,. . . , z ~ )  is generated in two steps: first, 
the summary ON is generated from some probability distribution (namely, 
the image of the distribution P under the mapping t ~ ) ,  and then the data 
sequence (21, . . . , zN) is chosen randomly from PN(. I ON). Already the second 
step ensures that, conditionally on knowing ON (and, therefore, uncondition- 
ally), the sequence ( p ~ ,  . . . ,PI) is distributed as UN. Indeed, roughly speaking 
(i.e., ignoring borderline effects), p~ will be the p-value corresponding to the 
statistic AN and so distributed, at least approximately, as U (see, e.g., Cox 
and Hinkley 1974, 53.2); when the pair (ON-1, ZN) is disclosed, the value p~ 
will be settled; conditionally on knowing  ON-^ and ZN, pnr-1 will also be 
distributed as U,  and so on. 

We start the formal proof by defining the a-algebra Gn, n = 0,1,. . . , N, as 
the one on the sample space (Z x [ O , I ] ) ~  generated by the random elements 
on := tn(zl,.  . . , zn), zn+l, rn+l, zn+2, rn+2,. . . , ZN, TN. In particular, Go (the 
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most informative a-algebra) coincides with the original a-algebra on (Z x 
[o, 1 1 ) ~ ;  Go 2 GI 2 . - - 2 BN. 

Fix a smoothed conformal transducer f ;  it will usually be left implicit in 
our notation. Let pn be the random variable f (21, TI, . . . , z,, 7,) for each n = 
1,. . . , N; P will refer to the probability distribution P x uN (over examples 
zn and random numbers ~ n )  and IE to the expectation w.r. to P. It will be 
convenient to write pG(A) and &(J) for the conditional probability p(A I G) 
and expectation IE(J 1 G), respectively. The proof will be based on the following 
lemma. 

Lemma 8.7. For any trial n = 1,. . . , N and any E E [0, 11, 

Proof. Let us fix a summary an of the first n examples (21,. . . , z,) E Zn; we 
will omit the condition " I an". For every pair (5,k) from Fql(an)  define 

p+(5, k) := B, {(a, z) : An(a, z) > An(5, Z)) , 
p-(5,k) := Bn {(a,z) : An(o,z) > An(5, 2)) . 

It is clear that always p- 5 p+. 
Let us say that a pair (5,k) is 

0 strange if p+(5, Z) I E 

0 conforming if p-(5,k) > E 

0 borderline if pd(6,d) I E < p+(5,k). 

We will use the notation p- := p-(5,Z) and p+ := p+(5,k) where (3,k) is 
any borderline example (if there are no borderline examples, p- = p+ can 
be defined as infp-(5,k) over the conforming (5,k) or as supp+(5, k) over 
the strange (5,d)). Notice that the Bn-measure of strange examples is p-, 
the Bn-measure of conforming examples is 1 - p+, and the Bn-measure of 
borderline examples is p+ - p- . 

By the definition of a smoothed conformal transducer, pn I E if the pair 
( O ~ - ~ , Z , )  is strange, pn > E if the pair is conforming, and pn 5 E with 
probability 

E - p- 

P+ - P- 
(with, say, 010 := O) if the pair is borderline; indeed, in the latter case, as 

pn 5 E is equivalent to 

Therefore, the overall probability that pn 5 E is 
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The other basic result that we will need is the following lemma. 

Lemma 8.8. For any trial n = 1,. . . , N, p, is Gn-1-measurable. 

Proof. This follows from the definition, (8.4) on p. 193: p, is defined in terms 
of a,-l, z, and 7,. The only technicality that might not be immediately 
obvious is that the function 

of c E R and a E C is measurable. Let C E W. The set 

is measurable since it can be represented as 

where Q is the set of rational numbers and C, is the set of a satisfying the 
outer inequality in (8.21). 0 

First we prove that, for any n = 1,. . . , N and any €1,. . . , E ,  E [O,l], 

The proof is by induction on n. For n = 1, (8.22) is a special case of Lemma 8.7. 
For n > 1 we obtain, making use of Lemmas 8.7 and 8.8, properties 1 and 2 
of conditional expectations (see p. 279), and the inductive assumption: 

almost surely. 
By property 2, (8.22) immediately implies 

Remark In our definitions of conformal transducer, conformal predictor, etc., 
we assumed that the same random number T, is used for every potential label 
y of the new object x,. In fact, assuming Y is finite, we can also use a separate 
random number T: for each y E Y ,  with the random numbers T:, n = 1,2, .  . . , 
y E Y ,  independent. On the other hand, an arbitrary correlation between T:, 
y E Y, can be allowed; Theorems 8.1 and 8.2 will continue to hold as long as 
the random numbers TP, n = 1,2,. . . , are independent. 
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8.8 Bibliographical remarks and addenda 

Kolmogorov's program 

The general idea of on-line compression modeling seems to  have originated in the 
work of Andrei Kolmogorov, who is perhaps best known for his axiomatization of 
probability theory as a branch of measure theory (Kolmogorov 1933a). Kolmogorov, 
however, never believed that  his measure-theoretic axioms per se provide a satisfac- 
tory foundation for the applications of probability (as opposed to the mathematical 
theory of probability). Starting from Kolmogorov 1963 he embarked on a program 
of creating a better foundation. There is no complete published description of Kol- 
mogorov's program, but his papers (Kolmogorov 1968, Kolmogorov 1983) and papers 
reporting work done by his PhD students (Martin-Lof 1966, Vovk 1986, Asarin 1987, 
1988) provide material for a more or less plausible reconstruction of its main ideas; 
such an attempt was made in Vovk 2001b, Vovk and Shafer 2003. 

The standard approach to modeling uncertainty is to choose a family of prob- 
ability distributions, called a statistical model (see §A.l), one of which is believed 
to  be the true distribution generating, or explaining in a satisfactory way, the data. 
(In some applications of probability theory, the true distribution is assumed to be 
known, and so the statistical model is a one-element set. In Bayesian statistics, the 
statistical model is complemented by another element, a prior probability distribu- 
tion on the elements of the statistical model.) All modern applications of probability 
are widely believed to  depend on this kind of modeling. (We saw in 58.5 that, e.g., 
even such a classical procedure as the confidence predictor (8.10) based on the t- 
distribution can be directly analyzed in terms of on-line compression models, but 
the standard approach would be to do analysis in terms of statistical models.) 

In 1965-1970 Kolmogorov suggested a different approach to  modeling uncer- 
tainty, based on information theory, with the purpose of providing a more direct 
link between the theory and applications of probability. He started, in Kolmogorov 
1963, from the idea that  the object of probability theory is a finitary version of 
von Mises's notion of collectives, which he called "tables of random numbers", but 
the development of this idea lead him to the general idea of compression modeling. 
In Kolmogorov 1968 (52) he replaced finitary collectives by "Bernoulli sequences", 
which provide the first example of what we call "Kolmogorov complexity models". 
This development became possible only after the introduction of the algorithmic 
notion of complexity (now called Kolmogorov complexity) in Kolmogorov 1965. In 
Kolmogorov 1983 he defines Markov binary sequences, another example. A third 
example, Gaussian sequences of real numbers, is described by Asarin (1987, 1988); 
Asarin 1987 also describes the Poisson model. We will describe these three examples 
after a brief general description of Kolmogorov's approach. 

The general idea of Kolmogorov's program is that 

practical conclusions of probability theory can be substantiated as impli- 
cations of hypotheses of a limiting, under given constraints, complexity of 
phenomena under study 

(Kolmogorov 1983, 54). In essence, a Kolmogorov complexity model is a way of sum- 
marizing information in a data sequence; the summary then provides the constraints 
under which the complexity of the data sequence is required to  be close to the max- 
imum. Using Kolmogorov's algorithmic notion of randomness (a data sequence x 
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is algorithmically random in a set A containing x if the Kolmogorov complexity 
K(x I A) is close to the binary logarithm log (A[), we can say that the data sequence 
is required to be algorithmically random given the summary (i.e., algorithmically 
random in the set of all data sequences with the same summary). 

Each specific Kolmogorov complexity model provides a way of summarizing in- 
formation in a data sequence. The Bernoulli and Markov models are for binary 
(consisting of 0 and 1) sequences. The Bernoulli model summarizes a binary se- 
quence by the number of 1s in it. The Markov model summarizes it by the number 
of 1s after Is, 1s after Os, 0s after Is, and 0s after 0s. Besides, it is always assumed 
that the length of the data sequence is part of the summary. Accordingly, a finite 
binary sequence is Bernoulli if it has a maximal Kolmogorov complexity in the set 
of binary sequences of the same length and the same number of Is; Markov binary 
sequences have a maximal Kolmogorov complexity in the set of binary sequences 
with the same number of 1s after Is, 1s after Os, 0s after Is, and 0s after 0s. The 
Gaussian model summarizes a sequence of real numbers by approximate values for 
its arithmetic mean and variance (8.6), and so Gaussian sequences of real numbers 
are those maximally complex in the set of sequences of the same length and with 
similar mean and variance. 

The main features of Kolmogorov's program appear to be the following (some 
of these features have not been discussed so far): 

I t  is based on the idea of compression. The compact summary contains, intu- 
itively, all useful information in the data. 
The idea that if the summary is known, the information left in the data is 
noise, is formalized using the algorithmic notion of Kolmogorov complexity: the 
complexity of the data under the constraint given by the summary should be 
maximal (the requirement of algorithmic randomness). 
Semantically, the requirement of algorithmic randomness means that the condi- 
tional distribution of the data given the summary is uniform. 
I t  is preferable to  deduce properties of data sequences directly from the assump- 
tion of limiting complexity, without a detour through standard statistical models 
(examples of such direct inferences are given in Asarin 1987 and Asarin 1988 and 
hinted a t  in Kolmogorov 1983)' especially that Kolmogorov complexity models 
are not completely equivalent to standard statistical models (Vovk 1986). 
Kolmogorov's program deals only with finite sets and their elements. This fini- 
t a w  nature of Kolmogorov's program is typical of Kolmogorov's work in general: 
e.g., in his 1928 and 1929 papers he found it helpful to state even such an ap- 
parently asymptotic result as the law of the iterated logarithm in the observable 
terms, for finite sequences. 

Repetitive structures 

The notion of repetitive structure, first introduced by Martin-Lof (1974), is a natural 
outgrowth of Kolmogorov's program. Different authors used the term "repetitive 
structure" in different senses (in this book we continue this tradition in that our 
notion of repetitive structure is somewhat different from those we have seen in 
literature), and so we will be using "repetitive structure" as a generic term covering 
several related concepts. 

Martin-Lof spent 1964-1965 in Moscow as Kolmogorov's PhD student. His pa- 
per Martin-Lof 1966 is an important contribution to the study of the Bernoulli 
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model, but perhaps his main achievement (published in the same paper) in this 
area is t o  restate Kolmogorov's algorithmic notion of randomness in terms of uni- 
versal statistical tests, thus demonstrating its fundamental character. After 1965 he 
and Kolmogorov worked on the information-theoretic approach to the applications 
of probability independently of each other (Martin-Lof having returned to  Sweden), 
but arrived at  similar concepts. In his work Martin-Lof was inspired not only by Kol- 
mogorov's program but also by Gibbs's and Khinchin's ideas in statistical mechanics; 
this is the original of names such as "Boltzmann distributions" or "microcanonical 
distributions" in the theory of repetitive structures. 

Martin-Lof (1974) gave the definition of repetitive structure, as in 58.3, but with 
the conditional distributions Pn(. I a) being uniform on a finite set and without the 
condition that t, should be computable from tn-1 and 2,; besides, his requirement 
of consistency of Pn involved conditioning on tn-1 only (and not on 2,). 

Martin-Lof7s theory of repetitive structures shared the idea of compression and 
the uniformity of conditional distributions with Kolmogorov's program; in fact the 
idea of compression was stated explicitly for the first time. An extra feature of 
repetitive structures is their on-line character: one consider sequences of all lengths 
n simultaneously (although the on-line character of the statistics tn seems to have 
entered the theory of repetitive structures through the work of Steffen Lauritzen, 
who in Lauritzen 1988 attributes this notion to  Freedman 1962, 1963). 

Despite being a key contributor to the algorithmic theory of randomness, Martin- 
Lof did not use the algorithmic notions of complexity and randomness in his theory 
of repetitive structures. In Chap. 2 we already referred to  our observation (Vovk 
and Shafer 2003) that these algorithmic notions tend not to lead to  mathematical 
results in their strongest and most elegant form. After having performed their role 
as a valuable source of intuition, they are often discarded. 

The notion of repetitive structure was later studied by Lauritzen; see, especially, 
his 1982 book and its revised and updated version (1988). Lauritzen's (1988, p. 207) 
repetitive structures do not involve any probabilities, which enter the picture through 
parametric "projective statistical fields". 

Dawid (1982) was influential in propagating Martin-Lof and Lauritzen's ideas 
among Bayesian statisticians. 

Freedman and Diaconis independently came up with ideas similar to  Kol- 
mogorov's (Freedman's first paper in this direction was published in 1962); they 
were inspired by de Finetti's theorem and the Krylov-Bogolyubov approach to er- 
godic theory. 

The general theory of repetitive structures (as well as its most important special 
case, the exchangeability model) is now considered to  be central t o  Bayesian model- 
building. See, e.g., the textbook by Bernardo and Smith (1994, Chap. 4), which 
discusses a wide range of repetitive structures, although without using this name. 

The usual approach in the theory of repetitive structures is first t o  find all 
probability distributions P on Zm that agree with the given repetitive structure 
and then to take the extreme points of the set of all such P as the statistical model. 
(And once we have a statistical model, a wide arsenal of standard methods can be 
used.) In the next three subsections we will see that this strategy have been very 
successful in the case of the repetitive structures considered in this chapter, and 
then we will return to the general theory. 
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Exchangeability model 

According to  Hewitt and Savage 1955, Haag (1928) seems to be the first t o  discuss 
the concept of exchangeability; he also hinted a t  de Finetti's theorem but did not 
state it explicitly. De Finetti's theorem in the binary case was obtained in de Finetti 
1930 and independently by Khinchin (1932); the extension to the general Borel case 
(stated as the result about real-valued random variables) is due to de Finetti (1937), 
and an abstract statement first appeared in Hewitt and Savage 1955. 

As described in the previous subsection, the binary exchangeability ("Bernoulli") 
model was the first complexity model considered by Kolmogorov (who arrived a t  it 
developing von Mises's ideas). 

There exists vast literature (including de Finetti 1938 and Freedman 1962) on 
partial exchangeability, a generalization of exchangeability akin to the Mondrian- 
exchangeability models. 

Label-conditional OCMs were first described in print by Ryabko (2003). 

Gaussian model 

The origins of the Gaussian model lie in statistical physics. Especially important is 
the simplified version of the Gaussian model in which the sufficient statistics are 

and the conditional distributions P,(. I a )  are uniform on the sphere t, = a. Gibbs 
proposed this as a model of the situation where zi, i = 1,. . . , n, is the speed of the 
i th molecule of ideal gas; the value oft, being known corresponds to  the total energy 
of all molecules being known; the uniform conditional distributions are called micro- 
canonical distributions in statistical physics. Maxwell's law (obtained by Maxwell 
using the assumption of independence of the components of the molecules' speed 
along the Cartesian axes) states that the distribution of zi is normal with zero mean 
and same variance. According to  Bourbaki (1969), Borel (1914) appears to  be the 
first to notice that Maxwell's law (representing the standard approach to statistical 
modeling) is a corollary of Gibbs's model when n is large. Borel's result was later 
developed by Ggteaux and LBvy (LBvy 1922). 

The result that those probability distributions that agree with the simplified 
Gaussian model are mixtures of power normal distributions N& appears to  be due 
to Freedman (1963) (according to  Kingman 1978), but it was also independently 
discovered by Kingman himself (Kingman 1972). The result about the full Gaussian 
model is due to Smith (1981). 

Fisher was the first to prove that (8.9) has the t-distribution with n - 2 degrees 
of freedom (see Fisher 1922, pp. 610-611, Fisher 1925, 35, and Fisher 1973b). This 
result was explicitly used for the purpose of prediction by Baker (1935). 

The name "Gauss liner model" was suggested for the standard linear regression 
model by Seal (1967). The on-line compression version of this model was suggested 
by Vovk (2004). 

Markov model 

Markov chains were introduced by Markov in 1906. 
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It  was shown by Diaconis and Freedman (1980) that those probability distribu- 
tions P that agree with the Markov on-line compression model (with Z finite) are 
essentially mixtures of Markov-chain distributions (more accurately, each extreme 
distribution P is a recurrent Markov chain preceded by a random string of transient 
states with given transition counts; two strings of transient states having the same 
transition counts have the same probability). 

The BEST theorem is named after its authors, de Bruijn, van Aardenne- 
Ehrenfest, Smith, and Tutte. 

Kolmogorov's modeling vs. standard statistical modeling 

The most important difference between Kolmogorov's program and the theory of 
repetitive structures seems to be in their basic goal: for the latter, it is derivation 
of standard statistical models, whereas Kolmogorov's main intention was to use 
complexity models directly. To achieve its goal, the theory of repetitive structures 
to  a large degree abandoned Kolmogorov's finitary ideal: a brief glance at, e.g., 
Lauritzen 1988 reveals that the main action takes place a t  infinity. 

Carrying over some properties of standard statistical models to  complexity mod- 
els was a subsidiary goal for Kolmogorov, but it is impossible to  derive the standard 
models themselves in the absence of the on-line framework brought in by Martin- 
Lof and without making heavy use of the infinitary aspects of the framework. For 
example, papers by Asarin (1987, 1988) demonstrate that the Gaussian bell can be 
discerned in the Gaussian complexity model, but the corresponding mathematical 
results only have a limited accuracy, with full accuracy not achievable. This has 
important implications for confidence prediction under the two kinds of models, and 
we will discuss them in detail for the Bernoulli and Markov cases. 

In the rest of this section we will assume that the reader is familiar with the main 
definitions of the algorithmic theory of randomness (see, e.g., Li and Vitinyi 1997, 
V'yugin 1994, Vovk and V'yugin 1993) or is willing to trust the following intuitive 
picture. If P is a probability distribution on a measurable space 0, we say that a 
function t : R --+ [O, 11 is a P-test if, for any E > 0, 

Such functions t can serve as statistical tests for testing the hypothesis P (and were 
used as a technical tool in $5.3). We only consider uniform tests: functions tp(w) of 
two arguments, P (ranging over a wide class of probability distributions on a wide 
range of measurable spaces R; it is important that R is not fixed in this definition) 
and w (ranging over a ) ,  which are "upper semicomputable" (it suffices to know that 
this is the most natural notion of computability in this context) and for all P are 
P-tests as functions of w. Martin-Lof's (1966) argument shows that there exists a 
universal uniform test, which is smaller, to within a multiplicative constant, than 
any other uniform test. (Although uniform tests were first formally introduced by 
Levin 1976.) We fix one of universal uniform tests, denote it by A, and call Ap(w) the 
algorithmic randomness level of w w.r. to P. The algorithmic randomness deficiency 
DP(w) of w E R w.r. to P is defined to be - log Ap(R) (with log being the base 2 
logarithm), the algorithmic randomness level on the logarithmic scale. 

If a set 52 is finite, Dn(w) stands for Dp(w), where P is the uniform distribution 
on R;  Kolmogorov's original definition of Dn(w) was given in terms of Kolmogorov 
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complexity (as described on p. 215). If P is a family of probability distributions on 
0 ,  

Dp(w) := inf Dp(w), w E 52 . 
P E P  

(8.23) 

(Levin 1973 showed that, for a wide range of P, D p  can also be defined directly, 
generalizing the definition of Dp.) We say that w E 52 is algorithmically random, or 
typical, w.r. to P to mean that Dp(w) is small. 

Let Z = {0,1); we will consider two repetitive structures: Bernoulli and Markov. 
In the Bernoulli structure, the sufficient statistic t,(zl,. . . , z,) is the number of 1s 
among 21,. . . , z,, and in the Markov structure the components of the sufficient 
statistic t,(zl,. . . , z,) are the numbers of transitions 

and the initial bit zl. The conditional distributions Pn(. I u) are always uniform. 
When would we regard a binary sequence w = (21,. . . , z,) as a typical outcome 

generated by a repetitive structure (t,) (Bernoulli or Markov)? There are two natural 
answers. We say that w is Kolmogorov-typical if D,- I (~)(U)  (called the Kolmogorov 
algorithmic randomness deficiency, which we will axbreviate to LLKolrnogorov defi- 
ciency") is small. This notion was introduced in Kolmogorov 1968, 1983. We say 
that  w is repetitive-typical if Dp(w) (called the repetitive algorithmic randomness 
deficiency or, briefly, "repetitive deficiency") is small, where P is the class of all 
probability distributions on Z" that agree with the repetitive structure. 

Both notions of typicalness can be applied to  prediction. Namely, suppose we 
know the first n - 1 examples zl, . . . , 2,- 1 and our goal is to give a categorical 
prediction (0 or 1) for z,, with a given repetitive structure accepted as the model 
for zl ,  2 2 , .  . . . The prediction is possible if either zl, . . . , z,-1,O or 21,. . . , zn-1,l is 
untypical (we do not expect both to be untypical, since 21,. . . , zn-1, z, is expected 
to  be typical). We are interested in how different the two notions of typicalness are 
for the Bernoulli and Markov models and in the implications of any difference for 
prediction. (Our conclusion will be that there is an appreciable difference for both 
models, but it affects the quality of prediction significantly only for the Markov 
model.) 

The case of the Bernoulli model is studied in Vovk 1986. I t  is shown that the 
requirement of repetitive typicalness is stronger; namely, w = (21,. . . , z,) will be 
repetitivetypical if and only if w is Kolmogorov-typical and t,(w) (the number of 
1s in w) is typical w.r. to the binomial model. This statement carries over to  a wide 
range of repetitive structures (including Markov). For each probability distribution 
P on Zw that agrees with the given repetitive structure, ~ t , '  is the image of P 
under the mapping (zl,z2, . . . ) H tn(zl, . . . ,zn); let us denote the set of all such 
Pt,' by ~ t , ' .  Then w is repetitive-typical if and only if w is Kolmogorov-typical 
and t,(w) is typical w.r. to ~ t , '  (in the sequel we will omit "w.r. to ~ t , ' "  when 
talking about the algorithmic randomness of t,(w)). 

I t  is now easy to see that there are Kolmogorov-typical sequences which are 
not repetitive-typical in the Bernoulli model: any Kolmogorov-typical sequence of 
a large even length containing precisely n/2 1s will have repetitive deficiency of 
approximately i log n. (The values of algorithmic randomness deficiency are only 
defined to the O(1) accuracy and will always be approximate; we will not always 
mention this explicitly.) The value 4 logn is actually the largest possible value of 
repetitive deficiency for Kolmogorov-typical sequences of length n. I t  might appear 
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small as compared to the largest possible value for the Kolmogorov or repetitive 
deficiency, n, but it is comparable to the largest lower bound logn on the latter 
provided by the method of conformal prediction (remember that p-values used in 
conformal prediction are never less than l l n ,  which gives logn on the logarithmic 
scale; see the left-hand side of (2.18) on p. 26). Therefore, the difference of 4 logn 
might a priori have serious implications for prediction. The fact that it does not, 
follows from the "continuity" of binomial typicalness: the typicalness of the num- 
ber of 1s seen cannot change much after observing one more example (this follows 
from the characterization of binomial typicalness in Vovk 1986 and is proved for 
the general exchangeability model in Nouretdinov et al. 2003). Since we expect 
21,. . . , zn-1 to  be repetitive-typical when predicting z,, tn-l(zl, . . . , z,-~) will be 
typical; the property of continuity then implies that both tn(zl, . . . , z,-1,O) and 
t,(zl,. . . , zn-1,l) are typical, and in this case the difference between Kolmogorov 
typicalness and repetitive typicalness disappears. 

The conformal method rejects a possible value, 0 or 1, for z, based on the 
conditional distribution P,(. I t,); it does not take into account how untypical the 
value of the statistic t, may become. Therefore, it can never work better than the 
idealized method based on Kolmogorov typicalness. This is not a problem for the 
Bernoulli (more generally, exchangeability) model; we will now see that it creates 
difficulties for the Markov model. 

The key difference of the Markov model from the Bernoulli model is the absence 
of the continuity property for the algorithmic randomness deficiency of the summary 
an := tn(zl , .  . . , 2,): it is possible that a, will become very untypical even for a 
typical a,-1. For concreteness, let us consider the following specific binary Markov 
chain. The initial state is 0 and the transition probabilities are: 0 is followed by 1 
with probability M-2 and 1 is followed by 0 with probability M-l ,  where M is a 
large positive number. Therefore, the usual state of the Markov chain is 0; we will 
expect typical runs of 0 to have the order of magnitude M' and typical runs of 1 to 
have the order of magnitude M. 

Suppose the current state is 2,-1 = 0 and n is very large; how unlikely is 
it that z, = l ?  The answer given by Kolmogorov typicalness will agree with the 
answer (8.17) (see p. 210) given by the conformal predictor but will be very different 
from the answer given by repetitive typicalness. 

Let us start from repetitive typicalness. If 21,. . . , z,-1 contains both subse- 
quences O,1 and 1,O and is repetitive-typical w.r. t o  the Markov model, it will be 
typical w.r. t o  a Markov probability distribution P (see (8.23) and Diaconis and 
Freedman 1980, Example (19) on p. 120). The infimum in the definition (8.23) of 
the repetitive deficiency of zl, . . . , z, will be achieved a t  P or nearby (the univer- 
sal uniform test will detect that the other transition probabilities disagree with the 
empirical data), and then the occurrence of the rare transition 0 + 1 at  the end of 
21,. . . , z, will raise the repetitive deficiency of such a sequence to 2 log M. Therefore, 
we expect z, = 0 and the strength of this expectation is reflected, on the logarithmic 
scale, by the number 2 log M (which corresponds to outputting the prediction set 
(0) a t  the significance level M - ~ ) .  

The situation with conformal prediction appears anomalous: (8.17) involves the 
ratio nl,o/(nl,o + nl,l) instead of something like no,l/(no,o +  no,^). The former 
ratio gives probability M-l, which is log M on the logarithmic scale. In the next 
paragraph we will see that this result is a consequence of using Kolmogorov's strategy 
of evaluating the typicalness of zl, . . . , zn-1, z; (where z; is a potential value for 
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the example zn) given the value t,(zl,. . . ,zn-1, 2;); in particular, we will get the 
strength of expectation log M for z, = 0 after observing zn-1 = 0 even using 
Kolmogorov deficiency (which is an ideal universal function, not computable in any 
practical sense, unlike the simple formula (8.17)). 

Indeed, let 2,-1 = 0, z; = 1 and suppose that we are given a, := 
t , ( z~ , .  . . ,zn-1, 2;); in particular, knowing a, implies knowing that z; = 1. 
The uniform conditional probability (given a,) of 2,-1 = 1 is about M times as 
large as the uniform conditional probability of 2,-1 = 0; therefore, the unusual 
event that 21,. . . ,zn-1, z; ends in 01 raises the Kolmogorov deficiency of the se- 
quence to log M ,  which is log M short of the repetitive deficiency. It is easy to  see 
where the log M is lost. The sequence 21,. . . , zn-1, 2; is untypical for two reasons: 
first, a, is untypical (the algorithmic randomness deficiency of a, is log M ,  since 
having 1 as the last element is about M times less likely than having 0 as the 
last element); second, even given a,, the sequence 21,. . . ,z,-1, z; is still untypical 
(another log M). Repetitive typicalness takes both sources into account, whereas 
Kolmogorov typicalness disregards the first source. 

We can see that there is little hope of obtaining for Markov chains, even binary, 
a result about the optimality of conformal predictors analogous to that of Chap. 3 
(see Theorem 3.1 and the construction of a universal confidence predictor), unless 
symmetry (equality of the transition probabilities for 0 + 1 and 1 + 0) is assumed. 
There are several ways to  improve the efficiency of conformal prediction for asym- 
metric Markov chains. We could consider a "team" of two conformal predictors, one 
predicting the examples following 0, and the other predicting the examples following 
1, as in $7.3. It might be possible to  use Kolmogorov's (1983) suggestion to summa- 
rize the number of transitions approximately. We could use a version of conformal 
predictor for predicting several examples (this possibility will also be discussed in 
Chap. lo), but only report the prediction for the next example. Finally, we could 
simply estimate the transition probabilities, as described a t  the end of $10.1. We are 
not, however, especially interested in the fixes for the specific case of asymmetric 
Markov chains. Our goal in this discussion has been to  attract the reader's attention 
to  the necessity of exercising care in the use of on-line compression models. 



On-line compression modeling 11: Venn 
prediction 

This chapter extends the notion of a Venn predictor (Chap. 6) to the general 
framework of on-line compression modeling (Chap. 8). The result stated in 
Chap. 6 that Venn predictors are automatically valid is extended from the 
exchangeability model to general on-line compression models; its proof, given 
in 59.6, also proves the result of Chap. 6. 

Another focus of this chapter is introduction of a new class of on-line 
compression models, which we call hypergraphical models; it is analogous to 
causal networks in machine learning and contingency tables in mathematical 
statistics. Venn predictors appear to be particularly suitable for this model, 
although we also briefly mention conformal prediction. For each hypergraphi- 
cal model we define the most refined Venn predictor, which we call the "fully 
conditional Venn predictor" (FCVP). 

A special attention is paid to a subclass of hypergraphical models consist- 
ing of what we call "junction-tree models". This subclass is both amenable to 
straightforward analysis and wide enough to cover many practically interest- 
ing models. In particular, we find a simple explicit representation of the fully 
conditional Venn predictor for junction-tree models. In 59.5 we demonstrate 
the working of the fully conditional Venn predictor on an artificial data set 
randomly generated from a simple hypergraphical model. It appears that the 
FCVP will give reasonable results for small models, but to deal with larger 
models one would have to abandon full conditioning. 

Historically, the main sources of hypergraphical models are statistical 
physics, path analysis, and contingency tables (Lauritzen 1996, p. l ) ,  but the 
area providing most of the hypergraphical models of interest in our present 
context is the theory of causal networks; the model of 59.5 is of this type. Tran- 
sition to junction-tree models is the standard procedure in that area (Jensen 
1996, Shafer 1996b, Cowell et al. 1999). 

In this chapter we only consider the problem of classification: the label 
space Y is finite. 
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9.1 Venn prediction in on-line compression models 

The definition of validity for multiprobability predictors given in 56.2 is gen- 
eralized to arbitrary on-line compression models (or N-models, as defined on 
p. 194) M = (E,  0, Z, (Fn), (B,)) as follows: a multiprobability predictor F 
is N-valid, where N is a positive integer (the horizon), if for any probabil- 
ity distribution P on ZN that agrees with M and any nonnegative reversible 
game supermartingale G with horizon N and G(0) = 1, there exists a P- 
supermartingale So,. . . , SN with SO = 1 such that (6.19) (p. 156) holds for 
a11 XI,YI, . . . ,XN,YN. 

Next we generalize the notion of Venn predictor, introduced in 5 6.3 for the 
exchangeability model, to arbitrary on-line compression models. Any sequence 
of measurable finite partitions A, of the sets x Z, n = 1,2, .  . . , is called 
a taxonomy (or Venn taxonomy); as always, A,(a,z) stands for the element 
of the partition A, that contains (a, z). 

The Venn predictor determined by (A,) is the multiprobability predictor 
which outputs P, := {p, : y E Y )  G P(Y) at the nth trial, where each 
probability distribution p, on Y is defined as follows. Complement the new 
object x, by the "postulated label" y and set 

an-l := tn-1(~1,. . a ,  Zn-l), 

a n  := tn(z l , - . -  ,zn-1, ( x n , ~ ) )  . 
Define p, to be the probability distribution under Bn(an) of the labels in 
An (0,-1, (x,, Y)): for all y' E Y, 

A Venn predictor is the Venn predictor determined by some taxonomy. 
Formula (9.1) can be spelled out in the same way as we did for the spe- 

cial case of the exchangeability model in 56.3: partition the set F['(o,) 
En-1 x Z into categories, assigning (d, z') and (a", z") to the same category 
if and only if A, (d, z') = A, (a", z"), and define p, to be the probability 
distribution of the labels in the category T containing (a,-1, (x,, y)): 

Theorem 9.1. Any Venn predictor is N-valid for any N. 

The proof of this theorem is given in 59.6. 

9.2 Generality of finitary repetitive structures 

In this section we specialize the discussion of generality and specificity of 
repetitive structures in 88.4 (p. 197) to the Kolmogorov-type finitary repeti- 
tive structures with uniform conditional distributions. Formally, a repetitive 
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structure (E,  Z, (t,), (P,)) is finitay if the example space Z is finite and, for 
all n and a E tn(Zn), P,(. I a) is the uniform probability distribution on the 
finite set tzl(a). Let us fix Z and C (the latter can be, e.g., chosen large 
enough to contain all summaries that we are likely to be interested in). Then 
a finitary repetitive structure is determined by (t,), and we will sometimes 
say that (t,) is the repetitive structure. 

The choice of the repetitive structure (t,) reflects the strength of the 
assumption that we are willing to make about Reality. According to the def- 
inition given on p. 197, a finitary repetitive structure (t,) is more specific 
than another finitary repetitive structure (tk) (denoted as (t,) 5 (tk)) if 
t, = fn(tk) for some measurable functions f, : C -+ E. Intuitively, in this 
case t, performs a greater data compression than tk does and so represents 
a stronger assumption about Reality. In particular, if (t,) 1: (tk), then any 
probability distribution on Zoo that agrees with (t,) also agrees with (tk). 
The analogous statement is also true for a finite horizon N: any probability 
distribution on ZN that agrees with (t,) also agrees with (tk). 

We saw in Chap. 8 that the Gaussian model and the Mondrian models are 
more specific than the exchangeability model, and the partial order induced 
by the relation "more specific" on the Mondrian models is fairly rich. We will 
really need this relation, however, only in the case of hypergraphical models, 
introduced in the next section. 

9.3 Hypergraphical models 

Starting from this section we assume that the examples are structured, con- 
sisting of "variables". Formally, a hypergraphical structure is a triple (V, E, E )  
where: 

0 V is a finite set whose elements will be called variables; 
0 E is a family of V's subsets; elements of E are called clusters; the union of 

all clusters is required to be the whole of V; 
0 E is a function that maps each variable v E V into a finite set E(v) of the 

"values that v can take"; E(v) is called the frame of v; to exclude trivial 
cases, we always assume Vv E V : IZ(v)l > 1. 

We will eventually assume that some of the variables are marked as labels, 
but this assumption will not be needed in many of our considerations. A 
configuration on a cluster (or, more generally, V's subset) E is an assignment 
of an element of E(v) to each v E E. An example is a configuration on V; we 
take Z to be the set of all examples. 

A table on a cluster E is an assignment of a nonnegative number to each 
configuration on E. We will mainly be interested in natural tables, which assign 
only natural (i.e., nonnegative integer) numbers to configurations. (These are 
known as "contingency tables" in statistics.) The size of the table is the sum 
of values that it assigns to different configurations. A table set f assigns to 
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each cluster E a table fE on this cluster. Natural table sets are table sets all of 
whose tables are natural. We will only be interested in table sets all of whose 
tables have the same size, which is then called the size of the table set. The 
number assigned by a natural table set a to a configuration of a cluster E will 
sometimes be called the a-count of that configuration. 

Hypergraphical repetitive structures 

Now we are ready to define the hypergraphical repetitive structure and OCM 
associated with a hypergraphical structure (V, I ,  E); as usual, we start from 
the repetitive structure (C, Z, (t,), (P,)). The table set tn(zl, . . . , z,) gener- 
ated by a data sequence (i.e., sequence of examples) 21,. . . , zn assigns to each 
configuration on each cluster the number of examples among 21,. . . , z, that 
agree with that configuration (we say that an example z agrees with a con- 
figuration on a cluster E if that configuration coincides with the restriction 
zIE of z to E). The number of data sequences generating a table set a will 
be denoted #a (for #a to be non-zero the size of a must exist, and then 
the length of each sequence generating a will be equal to its size). The table 
sets a with #a > 0 (called consistent table sets) are called summaries; they 
form the summary space C of the hypergraphical on-line compression model 
and repetitive structure associated with (V, E, E). The conditional probability 
distribution P,(. I a), where n is the size of a ,  is the uniform distribution on 
the set of all data sequences 21,. . . , z, that generate a .  

The explicit definition of the hypergraphical OCM (C, 0, Z, F, B) is as 
follows: 

C is the set of all summaries (i.e., consistent table sets); is the empty 
table set, i.e., the one of size 0; 
Z is the set of all examples (i.e., configurations on V); 
the table set F(o, z) is obtained from a by adding 1 to the a-count of each 
configuration that agrees with z; 
an example z agrees with a summary a if the a-count of each configuration 
that agrees with z is positive; if so, we obtain a table set denoted a 1 z 
from a by subtracting 1 from the a-count of any configuration that agrees 
with z; B,(a), where n is the size of a ,  is defined by 

Among the probability distributions P that agree with the hypergraphical 
structure (V, E, E)  (i.e., with the OCM associated with (V, E, 5 ) ;  we do not 
always distinguish between hypergraphical structures and the corresponding 
OCMs and repetitive structures) are power distributions Qoo such that each 
Q (a probability distribution on Z) decomposes into 
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where a is any configuration on V, f is a fixed table set (not necessarily 
natural), and a l ~  is, as usual, the restriction of a to E .  

The exchangeability model with the example space Z corresponds to the 
hypergraphical model with only one cluster, E = {V). 

Fully conditional Venn predictor 

In the case of hypergraphical OCM with one or more vertices marked as 
labels, there exists a very natural Venn predictor, which will be called the fully 
conditional Venn predictor (FCVP). It is defined to be the Venn predictor 
determined by the taxonomy (called the filly conditional taxonomy) A, in 
which A,(a, z) consists of all (a', z') for which z and z' coincide on all non- 
label variables. 

The FCVP is not only natural but also computationally efficient in the 
class of hypergraphical models known as junction-tree models, introduced in 
the next section. It will be the only predictor considered in this chapter, 
but this should not be interpreted as a recommendation to always use it 
for hypergraphical models: carefully crafted Venn taxonomies will definitely 
have advantages for small data sets, and conformal predictors also remain an 
attractive option. 

Generality of hypergraphical models 

Fix the set V of variables and the frame E(v)  for each variable. The following 
proposition answers the question when the repetitive structure corresponding 
to a cluster set El is more specific than the repetitive structure corresponding 
to a cluster set E2 (in this case we will say that El is more specific than E2). 

Proposition 9.2. A cluster set El is more specific than a cluster set E2, de- 
noted El 5 E2, if and only if for all El E El there exzsts E2 E I 2  such that 
El c E2. 

Proof. The part "if" is obvious, so we only prove "only if". Suppose El is 
more specific than E2 but there exists an E E El which is not covered by any 
element of E2. Let k := IEl; without loss of generality we suppose that the 
model is binary (Z(v) = {0,1) for all v), that E = V, and that all subsets of 
E of size k - 1 are in E2. 

Consider the following k2k-1 x 2k matrix X: the columns of X are indexed 
by (0, l jk  (they represent the configurations of E) ;  the rows of X are indexed 
by the sequences in (0, l)k in which one of the bits is replaced by the symbol 
"x" (they represent the configurations of the k subsets of E of size k - 1); 
the element Xij of X in row i and column j is 1 if j can be obtained from i 
by replacing the x with 0 or 1 and is 0 otherwise. If the table corresponding 
to the cluster E is given by a vector t E Plik (NO being the set {0,1,. . . ) 
of nonnegative integers), the tables corresponding to the subsets of E of size 
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k - 1 are given by Xt. Therefore, our goal will be achieved if we show that 
there are two vectors tl  , t2 E lVgk such that Xt l  = Xt2. 

The rank of the matrix X is at  most 2k - 1, since the sum of all columns 
is the identical 2. The procedure of Gaussian elimination shows that there 
exists a zero linear combination of X's columns with rational (and, therefore, 
with integer) coefficients. Let to be a vector in z~~ such that XtO = 0. NOW 
we can take as tl any vector in N~~ with sufficiently large elements and set 
t2 := t l  + to. 0 

For simplicity we will only consider reduced hypergraphical models, i.e., 
models (V,E,S) such that no El, E2 E E are nested, El c E2; in this case 
we will also say that E is reduced. This does not limit generality, since we can 
always replace E by red(£), where red(&) is E with all E E E contained in 
some E' E E removed. (In other words, red(&) is the only reduced element of 
E's equivalence class, where the equivalence of El and E2 means that El 5 E2 
and 8 2  5 El.) 

The set of all reduced hypergraphical structures E (with V and E fixed) 
forms a lattice with the join and meet operations 

9.4 Junction-tree models 

An important special case is where we can arrange the clusters of a hyper- 
graphical model into a "junction tree". We will be able to give efficient pre- 
diction algorithms only for such junction-tree models; if the hypergraphical 
model we happen to be interested in is not of this type, it should be replaced 
by a more general junction-tree model before our prediction algorithms can 
be applied. 

Formally, a junction tree for a hypergraphical model (V, E, S )  is an undi- 
rected tree (U, S) (with U the set of vertices and S the set of edges) together 
with a bijective mapping C from the vertices U of the tree to the clusters E 
of the hypergraphical model which satisfies the following property: if a vertex 
v lies on the path from a vertex u to a vertex w in the tree (U, S), then 

(we let C, stand for C(x)). The tree (U, S) will also sometimes be called the 
junction tree (when the bijection is clear from the context). It is convenient 
to identify vertices v of the junction tree with the corresponding clusters Cv 
in I. If s = {u,v) E S is an edge of the junction tree connecting vertices u 
and v, we will write C, for C, n Cv; C, will be called the separator between 
C, and Cv. 
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We will say "junction-tree structures/models" to mean hypergraphical 
structures/models in which the clusters are arranged into a junction tree. Fix 
such a model (V, E, E) until the end of this section; (U, S) is the corresponding 
junction tree, F, are the forward functions, B, are the backward kernels, t, 
are the statistics, and Pn are the conditional probability distributions given a 
summary. 

Combinatorics of junction-tree models 

It is easy to characterize consistent table sets in junction-tree structures. If 
El C E2 G V and f is a table on E2, its marginalization to El is the table f * 
on El such that f * ( a )  = Cb f (b) for all configurations a on El, where b ranges 
over all configurations on E2 that agree with a (i.e., such that b l ~ ~  = a). 

Lemma 9.3. A natural table set a on  (V, 1, E)  i s  consistent if and only if the 
following two conditions hold: 

each table in a is of the same size; 
i f  clusters El, E2 E E intersect, the marginalizations of their tables to 
El n E2 coincide. 

This lemma is obvious; it, however, ceases to be true if the assumption that 
(V, E, E)  is a junction-tree structure is dropped. 

If a is a summary and E is a cluster, we earlier defined aE as the table 
that a assigns to E. If E is a separator, say E = C{,,,), aE stands for the 
marginalization of uc, (equivalently, by Lemma 9.3, of ac,) to E. 

The factorial-product of a cluster or separator E in a summary a is, by 
definition. 

(remember that O! = l), where conf(E) is the set of all configurations on E. 

Lemma 9.4. Consider a summary a of size n in the junction-tree model. The 
number of data sequences of length n generating the table set a equals 

#a = 
n! n,,, ~P,(G) 
nu,, a x u )  

Proof. The proof is by induction on the size of the junction tree. If the junction 
tree consists of only one vertex u, the right-hand side of (9.3) becomes 

which is the correct multinomial coefficient. 
Now let us assume that (9.3) is true for some tree and prove that it remains 

true for that tree extended by adding an edge s and a vertex u. (The example 
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space for the new tree will be bigger.) We are required to show that the number 
of data sequences generating cr is multiplied by 

-- ffc, (a)! 

n b E a g r ( a )  f f c ~  (b)! ' 

where agr(a) is the set of all configurations on Cu that agree with a. It remains 
to notice that the number of ways in which each sequence of n examples in 
the old tree can be extended to a sequence of n examples in the new tree is 
given by the right-hand side of (9.4). 0 

We will use the shorthand 

for both vertices and edges u of a junction tree; here z is an example or, more 
generally, a configuration whose domain includes all variables in Cu. 

Lemma 9.5. Given the summary o of the first n examples 21,. . . , z,, the 
B,(a)-probability that z, = a equals (the maximum-likelihood estimate - see 
$9.6) 

nu,u ffu(a> 
n nsGS ff8 (a) 

(9.5) 

(this ratio is set to 0 if any of the factors in the numerator or denominator 
is 0; in this case z, = a does not agree with the summary (T). 

Proof. Using Lemma 9.4, we obtain for the probability of zn = a: 

Shuffling data sets 

In this subsection we will see that Lemma 9.5 provides an efficient means of 
drawing a data set 21,. . . , zn from the conditional distribution Pn(an), where 
0, is a summary of size n in the junction-tree model. This can be used for 
shuffling data sets to make them conform to the given hypergraphical model 
(see sB.4). 

It is convenient first to direct the junction tree, designating an arbitrary 
vertex as the root and directing all edges from the root (so that the root 
becomes an ancestor of every vertex). We can then rewrite (9.5) as 

where u' is the separator between u and u's parent. The last formula provides 
an efficient means of generating a random data sequence 21,. . . , z, from a 
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summary a, of size n: to generate z,, first generate znlco from ao/n (i.e., 
from the probability distribution that assigns weight ao(a)/n to each config- 
uration a on Co), then choose 0 ' s  child u and generate znlcu from a,/a,~ 
(i.e., from the probability distribution that assigns weight a,(a)/a,,(a) to 
each configuration a on C, that agrees with z,l,l), and so on. After z, is 
generated, we can generate 2,-1 in a similar way from a, J, z,, then generate 
2,-2 from a, J, z, J,z,-1, etc. 

Decomposability in junction-tree models 

Corollary 9.6. Each power probability distribution Qoo on Z" that agrees 
with the junction-tree model is decomposable in the sense of (9.2). 

Proof. The idea of derivation of this corollary from Lemma 9.5 is standard; 
see, e.g., Lauritzen 1988 (Theorem 4.4 on p. 61). 

Let Q be a probability distribution on Z such that the power distribution 
Qbo on the set of sequences zl, 22 , .  . . agrees with the junction-tree model. It 
is clear that, for each configuration a on V, 

(the conditional Qbo-probability that zl = a)  is given by (9.6). According to 
LBvy's "downward" theorem (Williams 1991, $14.4) and the Hewitt-Savage 
zero-one law (Shiryaev 1996, Theorem IV.1.3), Q,(a) converge almost surely 
to IEQ- Q,(a) = Q{a) as n -+ oo. Borel's strong law of large numbers shows 
that all ratios in (9.6) converge almost surely; this completes the proof. 0 

Prediction in junction-tree models 

Next we consider the situation where the IVI variables of the junction-tree 
model are divided into the attributes Vobj and the label variables Kab; only a 
subset of labels, the target label variables Karg, have to be predicted1. There- 
fore, 

Karg 5 f l ab  = V \ Vobj - 
The object space X is then the set of all configurations on Vobj, the label space 
Y is the set of all configurations on Vab, and we define the target label space 
Ytarg to be the set of all configurations on Karg Each example z, has two 
components: the values x, := z, E X (the object) taken by the attributes 
and the values y, := z, I V , , , ~  Y (the label) taken by the label variables; we 
will write (x,, y,) to mean z,. The values y p g  := z, IV,,,,E Ytarg taken by 
the target label variables will be called the target label. 

'1t might have been more natural to restrict the use of the word "label" only 
to target labels, and to call non-target labels, for example, nuisance variables; our 
terminology, however, is more consistent with that of the previous chapters. 
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In this subsection we will give a simple and explicit representation of the 
FCVP. Suppose we have observed examples 21,. . . , z,-1 and we are given 
a new object x,. For each y" E Ytarg we are interested in the conditional 
B,(o,)-probability (where a, := tn(zl, . . . , z,-l, (x,, y)), for different y E Y) 
that the target label y 2 g  is y" given that the values of the attributes are x,. 

Consider the "y-completion", in which the object x, is complemented to 
the example (xn, y), where y E Y is a label. Let A,,,! be the following IY I x IY I 
matrix with rows and columns indexed by Y: each entry A,,,) is the fraction 
of examples in An(anWl, (x,, y)) (where A, is the full conditional taxonomy 
and on-1 := t ,-~(zl,.  . . ,zn-1)) labeled by y'; remember that this matrix 
determines the Venn predictor's output (which is the set of the probability 
distributions represented by the rows of the matrix; cf. p. 161). This fraction 
(the conditional probability in the y-completion that z, = (x,, y') given that 
the attributes' values are x,) is proportional to 

where a := tn(zl, . . . , zn-l, (x,, y)), since, by Lemma 9.5, (9.7) is proportional 
to the unconditional B,(a)-probability that z, = (x,, y'). To obtain the pre- 
diction for the target labels only, the rows of A have to be marginalized to the 
target labels. Summarizing, we obtain the following description of the FCVP 
for junction-tree models (some explanations are given after the description). 

JUNCTION-TREE FCVP 

a', := 0; 
FOR n = 1,2 , .  . .: 

read x, E X; 
FOR y E Y :  

0 := Fn(gn-1, (xn, Y)); 
FOR uf E Y 

END FOR; 
normalize the rows of A,,,); 
set P, C P(Ytarg) to the rows of A,,,) marginalized to &arg; 
read y, E Y;  
a n  := Fn(mn-1, (xn, ~ n ) )  

END FOR. 

The normalization of the rows of the matrix A,,,! means that first the sums 
S, := C,, A,,,, are computed and then each A,,,) is divided by S,. If a(yf), 
y' E Y, is a row of the matrix A, its marginalization to Karg is defined to be 
the probability distribution on Ytarg that gives the weight 
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Fig. 9.1. The "wet grass" causal network 

to each y" E Ytarg. 

Universality of the fully conditional Venn predictor 

The FCVP is universal in our usual asymptotic sense: if the examples are 
generated from a power probability distribution Qm on Zm that agrees with 
the given junction-tree model, the maximum distance between the prediction 
it outputs and the true conditional probability distribution for the next label 
tends to zero (the maximum distance between a set A and a point b being 
defined as the supremum of distances between a E A and b). This follows 
from, e.g., the proof of Corollary 9.6. 

9.5 Causal networks and a simple experiment 

A rich source of hypergraphical models is provided by the theory of causal 
modeling. We start from a simple example (considered by Pearl 1988 and 
Jensen 1996). 

One morning when Mr. Holmes leaves his house for work he notices that 
his grass is wet (H). Was there a rain overnight (R) or did he forget to turn 
off the sprinkler (S)? Next he checks his neighbor Dr. Watson's grass (W). 
It is wet as well, and so Mr. Holmes concludes that wet grass was caused 
by rain. We can arrange the variables H (Mr. Holmes's grass is wet), W 
(Dr. Watson's grass is wet), R (rain), and S (sprinkler) in the causal network 
shown in Fig. 9.1. The directions of the arrows are intended to reflect the order 
in which the values of the variables are settled by Reality: first she decides, 
using a stochastic procedure, on the values of R and S;  given the realized 
values of R she decides on W; and finally, given R and S she decides on H. 
The probabilities used by Reality are as follows (each variable is assumed 
binary and takes value 1 if the corresponding event happens and 0 if not): 

are the probabilities for R and S, 
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are the conditional probabilities for W given R (Watson may also forget to 
turn off his sprinkler, but this event is not reflected in the network explicitly), 
and 

are the conditional probabilities for H given R and S. 
The general approach of causal modeling is to start from a directed acyclic 

graph (or, more generally, a "chain graph"), such as that in Fig. 9.1, erase the 
directions of all arrows adding undirected edges between all pairs of vertices 
that share a common child ("marrying the parents"), and then consider the 
hypergraphical model whose clusters are the cliques of the resulting undirected 
graph. If this model is not a junction-tree model (it is in the case of Fig. 9.1), 
there are computationally efficient ways to find its reasonable junction-tree 
extension (in the sense of the relation 5; see Proposition 9.2 on p. 227). The 
area of causal modeling thus provides numerous examples of junction-tree 
models; for details, see Jensen 1996 or Cowell et al. 1999. 

The preceding paragraph describes only part of the process of causal mod- 
eling, which is sometimes called qualitative modeling. Another important in- 
gredient is quantitative modeling (Cowell et al. 1999, pp. 27-29): the standard 
approach requires both the structure (such as Fig. 9.1) and the prior prob- 
abilities (such as (9.8)-(9.10)). In our approach we do not need the second 
ingredient: given only the structure, Venn predictors output multiprobability 
predictions that are automatically valid. 

The hypergraph corresponding to the "wet grass" network of Fig. 9.1 has 
two clusters, {W, R} and {H, R, S); they form a trivial junction tree with two 
vertices and one edge between them. The separator is {R). 

Table 9.1 shows the output of the FCVP when run on a data set generated 
randomly from (9.8)-(9.10). Mr. Holmes observes his own and Dr. Watson's 
grass every morning, then checks his sprinkler (if in any doubt), and finally 
listens to the weather report in the car on his way to work (of course, this pure 
on-line protocol can be relaxed, as in Chap. 4). Table 9.1 gives, for selected 
trials, the trial number n, the observed values H,, W,, and S, of the variables 
H ,  W, and S at trial n, the prediction (more precisely, the convex hull of the 
computed multiprobability) for S, = 1 given the observed value of H,, and 
the prediction for S, = 1 given the observed values of H, and W,. Naturally, 
the prediction for S, = 1 given H,, denoted Pn(Sn = 1 I H,), is computed 
using the Junction-tree FCVP algorithm with W, R, S as the labels and S as 
the target label, and the prediction for S, = 1 given H, and W,, denoted 
Pn(Sn = 1 I H,, W,), is computed using the Junction-tree FCVP with R, S 
as the labels and S as the target label. 

Trials 3, 8, and 10, where some combination of H and W is observed for 
the first time, show the full conditionality of the predictor used: no informa- 
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Table 9.1. The FCVP as run on a data set randomly generated from the "wet 
grass" causal network: the first 17 trials, the trials in the range n = 18,. . . ,100 with 
Hn = 1, and the first trial from n = 1000 with Hn = 1 and W n  = 1; the latter is also 
given for three other data sets randomly generated from the same causal network 
(the superscript in square brackets indicates the initial state, if different from 0, of 
MATLAB's pseudorandom numbers generator) 

[O, 11 
[O, 0.51 

[O, 11 
[0,0.333] 
[0,0.25] 
[O, 0.21 
[0.5,11 

[0.667,1] 
[0,0.167] 
[0,0.143] 
[0,0.125] 
[O, 0.1111 
[O, 0.11 

[0.5,0.75] 
[0,0.091] 
[0,0.083] 
[0.6,0.8] 

[O, 11 
[O, 0.51 
[O, 11 

[0,0.333] 
[0,0.25] 
[O, 0.21 
[0.5,11 

[O, 11 
[0,0.167] 

[0,11 
[0,0.125] 
[O, 0.11 1) 
[O, 0.11 

[0.647,1] 
[0,0.091] 
[0,0.56] 

[O. l67,O.583] 
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tion gathered for other combinations is used and the prediction is vacuous, 
[O, 11. The predictions Pn(Sn = 1 I H,) for both subsequences { n  : Hn = 0) 
and { n  : Hn = 1) are identical to the predictions in the Bernoulli problem 
(discussed on p. 159). The predictions P, (S, = 1 I Hn, W,), however, are not 
so simple: see trials 14 and 17. The predictions for trials 31-83 clearly show the 
"explaining away" phenomenon: the conditional probability of S, = 1 drops 
after Holmes learns that W, = 1. The predictions for trials starting from 1000 
(for four different randomly generated data sets) can be compared with the 
true conditional probabilities: Jensen (1996) computes that S, = 1 with prob- 
ability 0.339 given Hn = 1, and Sn = 1 with probability 0.161 given H, = 1 
and Wn = 1. Only one of the eight predictions covers the corresponding true 
value, but this is not surprising: our current situation (with a simple network 
and full conditioning) is not so different from the Bernoulli case (p. 159), and 
so one would expect the order of magnitude n-I for the nth prediction's di- 
ameter and n-lI2 for the accuracy with which the true probabilities can be 
estimated. Despite this lack of coverage, the FCVP's predictions, as we know, 
still agree perfectly with the observed frequencies. 

9.6 Proofs and further informat ion 

Proof of Theorem 9.1 

The proof is based on the usual device of reversing the direction of time 
(cf. 88.7) and the fact that the Venn predictor's multiprobability predictions 
contain the true probabilities if viewed backwards. 

We will prove the following result, which will easily yield Theorem 9.1 
(p. 224). 

Proposition 9.7. Let F be any Venn predictor. For any nonnegative re- 
versible game supermartingale G with G(O) = 1 and any probability distribu- 
tion P on  zN that agrees with the given OCM (Z, 0, Z, F, B), there exists a 
nonnegative random variable 5 on  ZN such that J J d P  < 1 and, for any data 
sequence (XI, YI, . . . , XN,YN) E ZN, 

where P,, n = 1, .  . . , N ,  is  the prediction generated by F from XI,  yl, . . . , x,. 
Proof. Since G is reversible, (9.11) is equivalent to 

where, as before, 
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is the Venn predictor's output. We will prove the stronger statement 

where 

is the distribution of the labels y* in the pairs (x*, y*)) E x Z 
generated by B,(t,(xl, yl, . . . , x,, y,)) conditional on 

in symbols, 

where 

and (A,) is the partition that determines the Venn predictor. Inequality (9.13) 
implies (9.12) because, by the definition of a Venn predictor, p, E P,. To 
complete the proof we will show that 

(with ~ ( x N ,  y ~ ,  . . . , X I ,  yl) understood as G(O) = 1) is a P-supermartingale 
under a suitable choice of the filtration (3,). (Our current probability space 
is 0 := zN, and so the qn(xN, YN, . . . , X I ,  yl) is a special case of our generic 
notation qn(w); see 5A.6.) 

Each o-algebra Fn, n = 0,1,. . . , N,  on the space of elementary events 

is generated by the random elements XN-,+~, y ~ - , + l , .  . . , XN,  YN, the sum- 
mary tN-n(x1, y1,. . . , XN-,, Y N - ~ ) ,  and the partition AN-, (notice that r],  

is measurable w.r. to 3,). To show that q is a P-supermartingale, we need to 
establish E(qn I 3,-1) 5 qn-l, i.e., 
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(the expectation being w.r. to P ) .  Since P agrees with M, this is equivalent 
to 

where PN, y ~ ,  . . . , P N - ~ + ~ ,  YN-n+2 are deterministic, and the expectation 
symbol IEB refers to (CTN-,, y ~ - n + l )  being drawn from B ~ - , + l ( a ~ - , + ~ )  for 
a given flN-n+l E ZN-n+l and pN-n+l (an A~-,+1-measurable probability 
distribution on Y) calculated from (aN-,, yN-n+l) as the distribution of the 
labels in A N - n + l ( ~ ~ - n ,  y ~ - ~ + l )  under B N - ~ + ~ ( c T N - ~ + ~ ) .  By the definition 
of PN-n+l, the last equality follows from 

which in turn follows from the definition of a game supermartingale (p. 150). 
Since rl is a supermartingale, we can set 

To deduce the theorem from the proposition, set Sn in the definition of N- 
validity to E ~ ( Q  I zl, . . . , z,), the conditional expectation of J' := J +  1 - JdP 
given 21,. . . , z, under the probability distribution P .  

Maximum-likelihood estimation in junction-tree models 

This subsection will justify the reference to maximum-likelihood estimation 
in 89.4 (Lemma 9.5 on p. 230). We consider a junction-tree model (V, E ,  E);  
as we know (Corollary 9.6), the data-generating distribution can be assumed 
to satisfy the decomposition property (9.2) (p. 226). 

Lemma 9.8. For any edge s in the junction tree, the variables in the two 
maximal disjoint subsets of V\C, divided by C, are conditionally independent 
given C,. 

(The two maximal disjoint subsets can be formally defined as UUEul Cu \ C, 
and UuEqCu \ C,, where Ul and U2 are the two maximal connected sets of 
vertices in the junction tree (U, S) with the edge s removed.) 

Proof. This follows immediately from the definition of conditional indepen- 
dence: if we fix the values of the variables in C,, (9.2) becomes the product 
of an expression involving variables of one subset and an expression involving 
variables of the other subset. 0 



9.6 Proofs and further information 239 

Lemma 9.9. In the case of junction trees, (9.2) can be represented as 

where the uncertainty is resolved to 0. 

Proof. The proof is by induction on the size of the junction tree. Replace the 
left-hand side of (9.14) by Q{z : z(v) = a(v),Vv E V); we no longer assume 
that V := UuEUCu includes all the variables. If the junction tree contains only 
one vertex (and no edges, which means that the denominator of (9.14) is I ) ,  
(9.14) is obvious. 

Now suppose that (9.14) holds for a junction tree (U, S); let us prove that 
it also holds for the junction tree (U*, S*) obtained from (U, S )  by adding 
another edge s and vertex w; let s = {u, w), where u is a vertex in U. Let V := 
UuEUCu and V* := UuEu*CU. We have (with the second equality following 
from the previous lemma): 

Q{z : z(v) = a(v),Vv E V*) 

= Q{z : z(v) = a(v),Vv E V} 

Q{z: z(v) = a(v),Vv E C,) 
X 

Q{z : z(v) = a(v),Vv E C,) ' 

This completes the proof. 0 

Lemma 9.10. Given a data sequence 21,. . . , z,, the maximum-likelihood 
model Q of the form (9.2) satisfies, for all configurations a on V, 

where a is the summary of 21,. . . , z, (cf. (9.6) on p. 230) and := 0. 

Proof. It is convenient to rewrite (9.14), ant tlogously to (9.6), as 
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The proof of the lemma is again by induction. For a one-vertex junction 
tree the statement of the lemma follows from the fact that the maximum- 
likelihood multinomial probabilities coincide with the empirical frequencies. 

Suppose (9.15) holds for a junction tree (U, S ) .  For a tree (U*, S*)  obtained 
from (U, S) by adding a vertex u and an edge u', we want to maximize 

n n 

~ Q { z :  z(v) = zi(v),Vv E V*) = 1 I ~ j . z :  z(v) = u(v).VV (11E V) 
i=l i=l 

n 

x ~ Q ( { . z :  Z(V) =z~(v).VV E C,) I { z :  Z(V) =z~(v).VV E Cur)) 
i=l 

(cf. (9.16)). It  suffices to notice that we can maximize the two factors in the 
right-hand side independently and remember that, for a fixed configuration b 
on C,I, the maximum-likelihood multinomial probabilities 

Q ( { z :  z(v) = a(v),Vv E Cu) I { z :  z(v) = b(v),Vv E CuO) , 

a ranging over the configurations on C, that agree with b, are given by the 
empirical frequencies a, (a)/aUr (b). 0 

9.7 Bibliographical remarks 

In our exposition of the hypergraphical model we mainly follow Vovk 2004. For 
further information about hypergraphs, see Lauritzen 1996 ($2.2). 

Additive models 

The hypergraphical model, as well as two of the models considered in the previous 
chapter (exchangeability model and Gaussian model) are additive in the following 
abstract sense: C is an Abelian semigroup and the statistics t, satisfy 

where "+" is the semigroup operation. The theory of such repetitive structures 
(with uniform conditional distributions P,(. I a,)) is especially rich and is treated 
in Chap. I11 of Lauritzen 1988. 



Perspectives and contrasts 

This book has emphasized transductive methods for machine learning. In 
this concluding chapter, we step back to survey the historical and philosoph- 
ical context of these methods, contrasting them with inductive and Bayesian 
methods. 

We begin, in $10.1, by discussing inductive methods. We review the history 
of inductive learning under randomness, from Jacob Bernoulli's eighteenth- 
century law of large numbers to recent developments in statistical learning 
theory. All of this work has been done in the off-line framework, but at the 
end of the section we also discuss how the martingale approach to hypotheses 
testing can be used for on-line inductive learning. 

In $10.2 we turn to transductive methods. We again take a historical per- 
spective. Although the word "transduction" came into the lexicon of machine 
learning only recently (as we noted in Chap. 1, it was introduced by Vapnik), 
there are many earlier instances of transduction - many instances where old 
examples have been used in a relatively direct way to predict new examples. In 
some of these cases we can find instances of conformal prediction. Of particu- 
lar 'interest is the prediction interval for a new observation based on Student's 
t-distribution that Ronald A. Fisher published in 1935. Our historical review 
begins with this work, continues with later work on tolerance intervals, and 
then moves on to the Vapnik-Chervonenkis approach to transduction, first set 
forth in their 1974 monograph, and to subsequent work in statistical learning 
theory. 

In general, an inductive method produces a prediction rule that can be 
applied to many new examples, and it aims for a high probability that the 
rule will predict with high accuracy. These goals are attractive but sometimes 
difficult or impossible to achieve. Transductive methods aim for less. Instead 
of trying to control two parameters - the desired accuracy and the probability 
of finding a rule with that accuracy - they try to control only the overall fre- 
quency of accurate predictions. This means that even when they succeed, they 
can be criticized for achieving less than an inductive method might achieve. 
But as we explain in the last subsection of 510.2, the cogency of this criticism 
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is doubtful in the on-line setting, where we use each rule only once. In the 
off-line setting, where we find a rule from old examples and apply it to many 
new examples, the repeated use of the rule gives empirical meaning to talk 
about its probability of predicting accurately. But in the on-line setting, where 
a rule for prediction, to the extent that it is even explicitly formulated, is used 
only once before being replaced by an improved rule, it may be meaningless 
to talk about the rule's probability of predicting accurately. It makes more 
sense to emphasize the overall frequency of accurate prediction. 

We discuss Bayesian learning in 510.3. Viewed from our framework, which 
allows examples to be governed by any probability distribution Q on Z, 
Bayesian learning requires us to make additional assumptions. First we as- 
sume that Q is one of a small family (Qe : 8 € @) of probability distributions 
on Z (this is the statistical model), and then we adopt a probability distri- 
bution p on O (this is the prior distribution) to express our probabilities for 
which Qe it is. Because of these additional assumptions, Bayesian learning 
lies outside the framework of this book. But it is currently very popular, and 
so it seems wise to explain briefly how it contrasts with our transductive 
methods. Our main conclusion will be unsurprising to anyone familiar with 
Bayesian learning: although Bayesian predictors are valid on their own terms, 
this validity depends on the additional assumptions being correct. When these 
assumptions are violated, Bayesian predictors may lack the kind of validity 
conformal predictors have. Perhaps more surprising is the fact that a prior 
distribution can be used to construct a conformal predictor, which gives pre- 
dictions resembling the Bayesian predictions when the Bayesian assumptions 
are correct but, like any conformal predictor, is valid even if they are incorrect 
(cf. p. 102). 

There is a slight shift in our notation in this chapter. In previous chapters, 
where we emphasized on-line transduction and therefore usually considered 
only one new example, we usually wrote 21,. . . , zn-1 for the old examples and 
zn for the new example. Now that we are also interested in the case where the 
same rule may be applied to many new examples, we will often write zl, . . . , zl 
for the old examples and q+l, . . . , zl+k: for the new examples. 

10.1 Inductive learning 

Induction means using old examples to formulate a rule for prediction that 
is then applied to new examples. When we are learning under randomness, 
the quality of the resulting predictions is affected by the randomness of both 
classes of examples. Because of the randomness of the new examples, there 
may be no prediction rule that performs perfectly, and because of the random- 
ness of the old examples, we cannot even expect to find the prediction rule 
that performs best. As discussed in Chap. 1, a precise mathematical state- 
ment of what can be achieved typically involves two positive numbers, often 
denoted by E and b; 6 is a level of imperfection we are willing to tolerate in a 
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prediction rule, and 6 bounds the probability we will fail to attain even this 
level. A typical theoretical result says that a certain method produces, with 
probability at  least 1 - 6, a rule whose probability of error is at most E. 

The oldest result of this type is Jacob Bernoulli's theorem, which appeared 
in 1713, in his posthumous Ars Conjectandi. Abraham De Moivre improved 
on this result in 1733, obtaining what we now call the normal approximation 
to the binomial distribution, and Bernoulli's and De Moivre's results were 
subsequently generalized in many directions. In this section, we review the 
generalizations most pertinent to learning under unconstrained randomness, 
including Vapnik and Chervonenkis's uniform law of large numbers and more 
recent work on data-dependent bounds. 

At the end of the section, we discuss a martingale approach to inductive 
prediction, inspired by the game-theoretic foundation for probability intro- 
duced in Shafer and Vovk 2001. For historical reasons, we postpone to 810.2 
a discussion of tolerance regions, another important approach to inductive 
prediction. 

To avoid the possibility of misunderstanding, we should mention that in 
this section, as in this whole book, we do not address the broad philosophical 
problem of induction that David Hume introduced in the eighteenth century. 
In the bulk of this book we are concerned only with learning under random- 
ness, where induction means using randomly chosen examples to find a general 
rule for making predictions about future randomly chosen examples. 

Jacob Bernoulli's learning problem 

It would be misleading to say that Bernoulli worked with our concept of 
induction, because his work preceded the concept of a probability distribution. 
We might even think of his purpose as transductive: he wanted to predict 
whether an event would happen (or whether something is true or false) by 
looking at previous examples. But this project led him to formulate what 
we now recognize as the problem of estimating a probability p from previous 
randomly chosen examples, and so we can regard him as the founder of the 
inductive approach to learning under randomness. 

Bernoulli likened his examples to pebbles drawn from an urn containing 
white and black pebbles in the ratio r to s, so that the probability of drawing 
a white pebble is p = r / ( r  + s). The problem he considered was that of 
estimating the ratio rls. But from the viewpoint of our framework, he was 
studying the problem of learning under randomness when there are no objects 
and the labels are binary. As usual, we take the labels to be 0 and 1 rather 
than white and black. Because there are no objects, we write Z = (0,l).  We 
write p for the probability of 1; this defines the probability distribution Q on 
Z. We write 21,. . . , zl for the old examples. 

Translated into these terms, Bernoulli's accomplishment was to show how 
to find, for any positive constants E and 6 and any p E [ O , l ] ,  a threshold 
N(E, 6, p) such that 
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for any I 2 N(E, 6,p). This assumes only that the zi are independent and equal 
to 1 with probability p, and it shows that, for large 1, 

is likely to be an accurate estimate of p. Results of this type, where counts 
or averages are shown to estimate probabilities or expected values, are now 
called laws of large numbers. 

Bernoulli's threshold N(E, 6, p) was remarkably large. In the numerical ex- 
ample he gives at  the end of Ars Conjectandi, where p = 0.6, E = 0.02, and 
6 = 1/1001, it comes out to 25,550, a huge number in the context of the data 
sets available in the eighteenth century. As Stigler says (1986a, p. 77), it "was 
more than astronomical; for all practical purposes it was infinite". Bernoulli 
does not admit to any disappointment, but he ends the book soon after the 
number 25,550 appears. 

Bernoulli's failure to produce a useable error bound has been repeated 
many times by subsequent authors. The error bounds produced by much of 
the leading theoretical work are too loose to be of practical value for available 
data sets, though authors seldom follow Bernoulli's example by providing 
numerical illustrations that make this shortcoming clear. 

Bernoulli's bound can be improved substantially. The essential step in 
removing the slack was taken by Abraham De Moivre in 1733. De Moivre's 
theorem, now considered a special case of the central limit theorem, tells 
us how to calculate approximate probabilities for zl + + 21. In modern 
terminology, it says that this sum, scaled properly, has an approximately 
normal distribution. This allows us to approximate the probability in (10.1), 
not merely bound it. In 1925, Karl Pearson used De Moivre's theorem to show 
that the lowest valid value for N(0.02,1/1001,0.6) - i.e., the lowest value of 1 
for which 

1 
{ ( z  Z )  ~ 0 . 6 ~ ) 0 . 0 2 }  1 i=1 5 

holds - is approximately 6498. He also found, modifying Bernoulli's argu- 
ment and using Stirling's formula, which was not known to Bernoulli, what 
he thought to be a rigorous valid value for N(0.02,1/1001,0.6); Sirazhdinov 
later showed that the value given by Pearson has to be replaced by 6568 (see 
Prokhorov 1986, 88). 

Even with the improvement brought by De Moivre's theorem, Bernoulli's 
approach has a drawback that might seem fatal from a rigorously logical 
point of view: the threshold N(E, 6,p) depends on p, which we are supposed 
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not to know. To estimate p we are told to take 1 to be at least N(E, b,p), but to 
compute N(E, 6,p), we need to know p already. But this difficulty can be solved, 
and although the solution is awkward (see, e.g., Stuart et al. 1999, Fj519.9- 
19.11), it usually produces a value for N(E, 6,p) not a great deal different from 
what we get after the fact for N (E, 6, kll) , where k is the observed number of 
1s among 21, . . . , 21. 

Although De Moivre's theorem eliminates the slack in Bernoulli's bounds, 
it produces values of N(E, 6,p) that are still embarrassingly large. Although 
we would always like to hope that the probability of error in a serious matter 
will be less than 1/1001, most decisions must be based on far fewer than 6568 
observations. So statisticians learn to be content with 6 = 0.01 or 6 = 0.05. 

Relatively weak levels of confidence, even when there is little slack in theo- 
retical bounds, remain common in learning under unconstrained randomness, 
even though we often have two advantages over Bernoulli and De Moivre: 
much larger databases (at least in some applications) and information about 
the objects to help us predict the labels. As we have already mentioned, this 
suggests that it may be too ambitious to try to control both the level of 
accuracy E and the probability of inaccuracy 6. 

Another feature of Bernoulli's and De Moivre's results that we still see 
in the inductive approach to learning under unconstrained randomness is the 
logarithmic dependence of the required number of examples on the parameter 
6. This is the ubiquitous In $ (see, e.g., (10.4) on p. 249 or Vapnik 1998). 
Bernoulli commented on this dependence, pointing out that the same number 
of additional examples is required every time we multiply the desired odds 
(1 - 6) : 6 by 10. When the desired odds are 1000 : 1 (6 = 1/1001), the 
number of observations required by Bernoulli's bound is 25,550. When they 
are increased to 10,000 : 1 (6 = 1/10001), this increases by 5708, to 31,258. 
When they are increased to 100,000 : 1 (6 = 1/100001), it increases again 
by 5708, to 36,966. When we take the slack out of Bernoulli's bounds, the 
dependence is still approximately logarithmic: according to Sirazhdinov, the 
6568 observations needed for odds 1000 : 1 goes up by about 2570 every time 
we multiply these odds by 10 - to 9142 for odds 10,000 : 1 and to 11,709 for 
odds 100,000 : 1. 

As a modern example of the logarithmic dependence on 6, we can cite 
Hoeffding's inequality (see 5A.7). In the case considered by Bernoulli, it says 

If we invert this inequality to solve Bernoulli's problem, we obtain 

This has the happy feature that it does not depend on p. But it is looser than 
Sirazhdinov's bound: instead of 6568 for N(0.02,1/1001,0.6), it gives 9503. 
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Statistical learning theory 

What we now call statistical learning theory was launched by Vapnik and 
Chervonenkis over 30 years ago, first in a short note published in 1968 and then 
in a full article, with proofs, published in 1971. In this work, they presented a 
very general and natural inductive method and showed that its performance 
can be guaranteed, for sufficiently long data sequences, by a uniform law of 
large numbers. 

Let A be a family of measurable subsets of Z (in general an arbitrary 
measurable space). We say that A shatters a finite set Z C Z if for any 
Z' C Z there exists A E A such that Z' = Z n A. We write VC(A) for the 
cardinality of the largest finite set A shatters, and we call VC(A) the VC 
dimension of A. When A shatters arbitrarily large sets, VC(A) := oo. 

The key result in Vapnik and Chervonenkis's theory is the inequality 

l{ i= l ,  ..., 1:z i  €A}/ 
Q' { ( a , .  - .  ,z1) : SUP 

A€ A 1 

which holds for every A satisfying 0 < VC(A) < 1 and for every probability 
distribution Q on Z. (There are many variations on this inequality, none of 
them canonical. This particular version appears in Vapnik 1998, Theorem 4.4.) 

Remark To see the potential of inequality (10.2), let us take Z to be {O,1) 
and A to be {@,A), where A is the singleton {I). In this case, VC(d) = 1, 
we can write p for Q({l)), and the inequality becomes 

(we added 0 to A to ensure VC(A) # 0). For fixed E the right-hand side of 
this inequality can be made arbitrarily small by making 1 sufficiently large, 
and so we obtain another proof of Bernoulli's law of large numbers. 

The inequality (10.2) is important not simply because it generalizes 
Bernoulli's theorem but because it does so uniformly in A. The right-hand 
side does not involve A, and so we can make the probability of a given devia- 
tion between &(A) and I{i = 1, . . . , I  : zi E A) I 11, the empirical frequency of 
A in the first 1 examples, small uniformly in A by taking 1 large enough. This 
is the Vapnik-Chervonenkis uniform law of large numbers: if VC(A) < m, 
then the empirical frequencies of the sets A E A converge to their probabilities 
Q(A) in probability uniformly. 

It is easy to see that this uniform law of large numbers allows us to derive 
guarantees for inductive classification. Recall that in our framework with Z = 
X x Y ,  classification is the case where IYI < oo. We extend the concept of 
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VC dimension to a family 3 of measurable functions f : X Y by taking 
VC(.F) to be the VC dimension of the family of their graphs 

Choose such a family 3, together with parameters E > 0 and 6 > 0, and 
suppose that for at least one function f in 3, f (xi) predicts yi correctly 
for most i. If 0 < VC(3) < oo, then (10.2) suggests the following strategy: 
choose 1 such that the right-hand side, with VC(A) replaced by VC(3), does 
not exceed 6, and choose a function f̂  in 3 that minimizes the empirical error 

(This choice of f is often referred to as "empirical risk minimization".) We 
then know that f^% probability of error as a prediction rule will not exceed 
~ ( f )  + E unless an unlikely event - an event of probability at  most b - has 
happened. The inequality (10.2) further implies that this probability of error 
will not exceed 

inf Q{(x, y) E X x Y : Y # f (x)) + 2~ 
f E 3  

unless an event of probability 26 has happened. 
There are several useful versions of (10.2), including extensions that are 

relevant to regression rather than classification. Moreover, it has been shown 
that the inequality is optimal in several senses. For example, a finite VC di- 
mension is necessary and sufficient for the uniform convergence of frequencies 
to corresponding probabilities (Vapnik 1998, Theorem 4.5). 

A number of practical prediction methods recommend using prediction 
rules having a small empirical error and belonging to a class of finite VC 
dimension (such as a subclass of neural networks; see also the description of 
structural risk minimization on p. 249). So the Vapnik-Chervonenkis uniform 
law of large numbers provides an asymptotic justification for methods actually 
used. The inequality (10.2) is far too loose, however, to tell us how confident 
we should be in the accuracy of the specific predictions these methods make. 
To see the problem, consider the sample size 1 required in (10.2) to make both 
probability bounds nontrivial - i.e., less than 1. For any result of this kind to 
have nontrivial implications, 1 must exceed the VC dimension. It is difficult 
to assess VC dimension precisely for the classes used in practice, but they 
are undoubtedly huge. One indication is the bound for the VC dimension 
of a sigmoid neural network obtained by Karpinski and Macintyre (1995, 
1997; see also Anthony 2003). This bound is roughly (WN)2, where N is 
the number of computational units and W is the number of independent 
parameters. For LeNet 1, the first and smallest of the neural networks designed 
by Yann LeCun's group for recognizing hand-written digits of the type in the 
USPS data set, N = 4635 and W = 2578, and so the bound exceeds 1014. 
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Karpinski and Macintyre's bound can likely be tightened, but it is a very long 
way to a practical result. 

The fact that the Vapnik-Chervonenkis uniform law of large numbers and 
similar results are usually too loose to give guidance about the confidence that 
we should have in predictions from actual data sets is, of course, well known. 
See, for example, NeuroCOLT 2002. 

Vapnik and Chervonenkis's theory was partially rediscovered by Leslie G. 
Valiant (1984), whose work helped create a large community of computer 
scientists who have enriched the theory with analyses of computational com- 
plexity. Their work came to be known as PAC theory, because they obtained 
estimates that were Probably Approximately Correct. In one respect, unfor- 
tunately, PAC theory was more restrictive than Vapnik and Chervonenkis's 
theory. Vapnik and Chervonenkis assumed only that at  least one of the func- 
tions in 3 did a good job of prediction, and in this sense 3 was only a tool 
for them. In PAC theory, it was assumed that the observed examples are ex- 
actly labeled by a function from 3 C YX - i.e., that there exists f E 3 with 
yi = f (xi) for all i, and this makes 3 part of the statistical model for Real- 
ity. Now that the greater generality of Vapnik and Chervonenkis's viewpoint 
is clearly understood, the contributions of the PAC theorists are considered 
contributions to Vapnik and Chervonenkis's statistical learning theory. 

Remark It is interesting that the Glivenko-Cantelli theorem, which some 
probabilists consider the fundamental result of mathematical statistics, is 
a special case of Vapnik and Chervonenkis's result, (10.2). The Glivenko- 
Cantelli theorem says that the empirical distribution function 

for a random variable C (zl, 22 , .  . . are independent realizations of <) converges 
almost surely to ['s distribution function F. To derive this result from (10.2), 
we take Z to be the real line and A to be the family of all sets of the form 
(-oo,t], t E R, so that VC(A) = 1 and thus 

< 4 exp (1 + ln(21) - (E - 1/1)~1) . (10.3) 

This inequality means that the empirical distribution function converges to 
the distribution function uniformly in probability, and the convergence almost 
surely required by Glivenko-Cantelli follows by the Borel-Cantelli lemma. The 
right-hand side of (10.3) is not too different from the 2exp(-2c21) obtained 
specifically for this special case by Dvoretzky et al. (1956) and Massart (1990). 
For further details, see Devroye et al. 1996 (512.8). 

If we are interested in the case where the "hypothesis space" 3 is of infinite 
VC dimension, it will often be possible to represent 3 as the union of a nested 
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sequence of function classes FI C F2 C . - . c 3 of finite VC dimension. For 
example, if 3 is the set of functions computable by neural networks, 3k may 
be the set of functions computable by neural networks with no more than k 
neurons. In this situation, empirical risk minimization should be replaced by 
"structural risk minimization"; for details, see Vapnik 1998 (Chap. 6). We will 
briefly describe the main idea of structural risk minimization in the case of 
transduction after the statement of Proposition 10.1 (p. 259). 

The quest for data-dependent bounds 

The excessive looseness of bounds such as (10.2) is often attributed to their 
nonconditionality - i.e., the fact that they do not depend on the particular 
training set 21,. . . , q at hand. We might hope to identify some training sets 
that are particularly informative, in the sense that they produce prediction 
rules with much better accuracy, and we might hope for a distribution Q that 
produces such favorable training sets with high probability. 

One popular and particularly elegant way of obtaining data-dependent 
bounds, which comes close to being useful, is Littlestone and Warmuth's sam- 
ple compression approach (Littlestone and Warmuth 1986, Floyd and War- 
muth 1995). Their theorem (Theorem 4.25 and its corollary Theorem 6.8 
in Cristianini and Shawe-Taylor 2000) tells us, as a special case, that the 
probability of error on a new example by a support vector machine making a 
prediction with d support vectors is bounded with probability 1 - 6 by 

where 1 is the size of the training set. The full theorem is applicable to any 
"sample compression scheme" ; support vector machines are only one instance, 
albeit a powerful one, of such a scheme. A similar result holds for regression 
problems (Cristianini and Shawe-Taylor 2000, Theorems 4.26,4.28, and 4.30). 

Though it is one of the tightest data-dependent bounds, Littlestone and 
Warmuth's bound still falls short of being useful. To see this, we observe that 
for each of the ten classifiers in the problem of identifying digits in the USPS 
data set, (10.4) is approximately 

even when we ignore the term In i .  (There are 7291 training examples, and 
the average for the 10 classifiers of the number of support vectors for the 
polynomial kernel of degree 3, the degree that gives the best predictive per- 
formance, is 274; see Table 12.2 in Vapnik 1998.) Thus the bound on the total 
probability of a mistake by one or more of the ten classifiers is 1.7, not a useful 
bound for a probability. There are more sophisticated schemes for multi-label 
classification using a binary classifier, but they involve separating unnatural 
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classes, such as odd and even digits, and so would lead to large numbers of 
support vectors. 

Another popular way of obtaining data-dependent bounds is the much 
more recent PAC-Bayesian approach (McAllester 1998, McAllester 1999a, 
Seeger 2003, Langford and Shawe-Taylor 2003). For a review of other ap- 
proaches, see Herbrich and Williamson 2002. 

A whole different tack, which is often advocated but seems to offer little 
real promise, is to derive bounds that depend on the probability distribution 
Q, in the hope that the relevant aspects of Q might be estimated from the 
training set well enough to make the bounds usable. One example is provided 
by the inequality 

This is a strengthening of (10.2), but the function Ha,,, called the "annealed 
entropy", depends on Q and as well as A. Another example is the well-known 
umer bound 

on a support vector machine's error probability. Here IE K L + ~  is the expected 
number of support vectors among examples z:, . . . , z:+~ randomly generated 
from QG1. (See Vapnik 1998, Theorem 10.5; Theorems 10.6 and 10.7 are also 
of this type.) These kinds of bounds leave us with the problem of estimating 
an aspect of Q and bounding the probable error of this estimate, which seems 
more daunting than the problem with which we began. 

The hold-out estimate 

Because it has no objects, Bernoulli's problem is of little interest to statistical 
learning theory, which emphasizes the use of complicated and informative 
objects. But as we have already remarked in Chap. 1, Bernoulli's theorem 
nevertheless has an important role in statistical learning theory, because it is 
used when we estimate an error rate from a hold-out sample. 

We can use the USPS data set to illustrate how reasonable the results 
obtained from the hold-out estimate are. The figures given in Appendix B 
show that the hold-out estimate gives reasonable results for this data set (at 
least producing values much less than one): assuming that the first half (4649 
examples) gives a prediction rule whose error rate on the second half is 4%, 
the generalization error is bounded above by, approximately, 
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with probability 99%. As we already mentioned, a major disadvantage of this 
bound is that it does not depend on the object whose label is being predicted, 
and taking into account the quality of the object will weaken the bound. 

Thirty years ago, George Barnard deplored the underuse of the hold-out 
estimate (Stone 1974): 

The simple idea of splitting a sample into two and then developing the 
hypothesis on the basis of one part and testing it on the remainder 
may perhaps be said to be one of the most seriously neglected ideas 
in statistics, if we measure the degree of neglect by the ratio of the 
number of cases where a method could give help to the number of 
cases where it is actually used. 

His words still ring true today. The accuracies of the methods in statisti- 
cal learning theory we have been discussing can be assessed much better by 
looking at  their performance on a hold-out sample than by using the loose 
inequalities that would guarantee their good performance on data sets im- 
mensely larger than those available. 

The hold-out estimate encounters several difficulties in practice, however: 

1. Usually we do not obtain as good a prediction rule using only the training 
set as we would have obtained using the entire data set. So far as the 
development of the prediction rule is concerned, the test set is wasted. 

2. The hold-out estimate of prediction accuracy uses only the performance 
on the test set. So far as the evaluation of the prediction rule is concerned, 
the training set is wasted. 

3. The hold-out estimate gives a single probability of error that applies to all 
new examples, regardless of how difficult they are. This single probability 
of error would apply, for example, to all three images in Fig. 1.2 on p. 4. 

The last problem can be partly overcome if we find, from the training set, a 
reasonable division of all objects into a few disjoint classes (perhaps just two, 
such as "clear images" and "blurred images") and estimate for each class a 
probability of error from its percentage of wrongly classified test objects. This 
approach makes our predictions more conditional on the information provided 
by the object. But because it decreases the size of both the training set and 
the test set for each prediction, it aggravates the first two problems. 

These difficulties provide one motivation for the new methods developed 
in this book. 

On-line inductive learning 

The work on inductive learning that we have been reviewing has been in an off- 
line setting. It is possible, however, to take advantage of an on-line setting for 
inductive learning. In this subsection we describe one simple on-line inductive 
predictor, whose domain of applicability is narrow but which sometimes has 
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advantages over natural transductive procedures within its narrow domain. 
The construction is similar to that of $7.2. 

In $8.8 we compared two styles of modeling under uncertainty: statistical 
modeling and on-line compression modeling. Statistical modeling is a suitable 
starting point in inductive learning and on-line compression modeling in trans- 
ductive. In this section we assume that the true probability distribution lies in 
a given statistical model (Po : 8 E Q), where O is a set in a finite-dimensional 
Euclidean space. This is a restrictive assumption: the true probability distribu- 
tion is known except several parameters, whereas in this book we emphasized 
the high-dimensional case, such as learning under unrestricted randomness for 
rich object spaces X. For simplicity, we will concentrate on the special case 
of binary Markov chains (considered earlier in $$7.3, 8.6, and 8.8), but it will 
be clear that our argument only depends on standard regularity assumptions 
(the main ones being that Po is continuous as a function of 8 and that the 
true parameter value can be consistently estimated from the data). 

A martingale predictor for a statistical model (Po : 8 E Q) on ZW is a 
family (S! : 8 E Q, n E M) of random variables on ZbO and a family r 6 ,  
6 E (0, I), of confidence predictors such that: 

S!, n = 1,2, .  . . , is a nonnegative Po-supermartingale (as defined on 
p. 170) with S: = 1, for all 8 E O; 

0 the prediction sets 

satisfy 

whenever 61 2 S2. 

(In our applications So will be Po-martingales.) We will say that such a mar- 
tingale predictor is valid if the conditional probability under Po that 

given (XI, yl, . . . , xn-1, y,-l, xn) never exceeds E. Roughly speaking, the con- 
ditional probability of error is required to be at most E under all probability 
distributions that are not discredited at  level 6; remember that St depends 
only on the first n examples XI ,  yl, . . . , x,, yn. 

Each valid martingale predictor satisfies the following version of the def- 
inition of conservative validity given in $2.1: for all E and 6 in (0,l) and all 
b' E 0, the sequence of random variables 

{$z6(r) if S: < 116 
otherwise 
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is dominated under Pe in distribution (as defined on p. 21) by a sequence of 
independent Bernoulli random variables with parameter E .  The only difference 
from the definition given in $2.1 is that we now allow testing of the probability 
distributions in the statistical model (Pe : I3 E Q). 

There are simple ways to construct valid martingale predictors for reg- 
ular statistical models that can be hoped to have reasonable properties of 
efficiency. For simplicity we will assume that Z is finite and that Q is Bore1 
and has a finite and positive Lebesgue measure; we will also assume that the 
relevant regular conditional probabilities exist and are fixed. A natural family 
of martingales Se is 

where p is the uniform probability distribution on Q and Pe(z1,. . . , z,) is the 
probability that the first n examples generated by Pe will be 21,. . . , z,. For 
each XI, yl, . . . , x, and 0 E Q sort y E Y in the order of decreasing conditional 
probability under Pe that y, = y given XI,  yl, .  . . ,x,; let y(l), . . . , ~ ( 1 ~ 1 )  be 
the sorted sequence. Define 

where k is the smallest integer such that the conditional probability under Po 
of the event y, E ( ~ ( ~ 1 , .  . . , y(k)) given XI ,  yl, . . . , x, is at  least 1 - E .  Finally, 
set 

The martingale predictor composed of (S:) and ( P 6 )  is always valid. More- 
over, for regular statistical models the Po-martingales S: will eventually reject 
all I3 outside a small neighborhood of the true parameter value, and we will 
also have asymptotic efficiency. In particular, in the case of the Markov model 
this martingale predictor does not suffer from the problem discussed on p. 220. 

10.2 Transductive learning 

Transductive prediction and model testing are two sides of the same coin - 
two of the many ways we can use a procedure that tells us whether a data set 
agrees with a statistical model. 

Testing: If we entertain an a priori possible model M for the data 21,. . . , z,, 
then seeing this data and detecting strong disagreement between it and 
the model will make us abandon the model. 
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Prediction: If we strongly believe in the model M and have not yet seen the 
data, or at least not all of it, then detecting strong disagreement between 
zl, . . . , z, and M allows us to predict that 21,. . . , z, will not happen. We 
have been particularly interested in the case where each zi consists of two 
components, xi and yi, and we have so far seen only zl, . . . , z,-l, x,. 

The topic of this book is prediction, but we start this historical survey with 
testing. As we already mentioned, the first test was devised by John Arbuth- 
nott in the early eighteenth century, but Arbuthnott's model was too simple 
(Byl2 with B1/2 the uniform distribution on (0, 1)) to have interesting impli- 
cations for prediction. So we start with Student's work and its development 
by Fisher. 

Student and Fisher 

In this subsection we take Z to be R and use the notation introduced in 38.5. 
We will assume that zl, 22,. . . are independent N,,,z random variables. 

In Student ($111) William S. Gosset, writing as "Student", correctly 
guessed the probability distribution of the ratio 

this ratio does not depend on u and so can be used for testing, e.g., the hy- 
pothesis p = 0. Fisher derived Student's distribution rigorously by September 
1912 (see Pearson 1968), but a demonstration was not published until much 
later. From the point of view of the general theory it is more natural to 
consider the ratio 

j L - p  n- , e n  
and the distribution of this ratio is now known as Student's t-distribution 
(with n - 1 degrees of freedom). 

Student's result is not general enough to lead to an interesting prediction 
procedure. A more general test was proposed in Fisher's 1925 paper, where, 
after rigorously deriving Student's result, he treated the problem of comparing 
the means of two independent samples from the same normal distribution. He 
showed that if zl, . . . , q ,  zr+l, . . . , p + k  are generated from N::~, then 

where 
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are the means and sums of squared deviations from the means for the two 
samples, has Student's t-distribution with 1 + k - 2 degrees of freedom. This 
result, as Fisher pointed out in 1935, does have implications for prediction. 
Setting k to 1 in (10.7), he obtained a result that we mentioned earlier, in 
Chap. 8: 

has Student's t-distribution with 1 - 1 degrees of freedom. So zl+l will belong 
to the interval (8.10) (p. 200, with n = 1 + 1) with probability 1 - 

Fisher stated his conclusion concerning zl+l more starkly than we have 
just done. From (10.8), he concluded that after observing 21,. . . ,zl, we can 
attribute a fully known probability distribution to zl+l - the distribution of 

where zl and 81  are now known constants and E has the t-distribution with 
1 - 1 degrees of freedom. Fisher called this the fiducial probability distribution 
for q+l. In earlier articles, starting in 1930, he had similarly derived "fiducial 
distributions" for the parameters of various statistical models. 

Fisher's fiducial argument was the topic of vigorous discussion in the 1930s 
and 1940s. He defended it until he died in 1962. (See 5V.4 of his book Sta- 
tistical Methods and Scientific Inference, first published in 1956.) But by the 
end of the 1930s, most mathematical statisticians had rejected it in favor of 
Jerzy Neyman's more restrained interpretation of estimation and prediction 
intervals, which recognizes that these intervals can have desired unconditional 
frequency properties but do not have all the properties we expect from prob- 
ability intervals (see, e.g., Kolmogorov 1942, $5). The problem, which we dis- 
cuss more fully at the end of this section, is that after observing 21,. . . , q we 
should be interested in the conditional distribution of (10.8) given 21,. . . , 21, 
and this is an unknown normal distribution, not the known t-distribution. 
Fisher conceded the nonconditionality of the distribution, in his 1935 paper 
and subsequently, and he saw some force in the objection. In 5V.3 of his 1956 
book, e.g., he wrote: 

For verification, the original prediction must be held firmly in view. 
This, of course, is a somewhat unnatural attitude for a worker whose 
main preoccupation is to improve his ideas. It is perhaps for this rea- 
son that some teachers assert that statements of fiducial probability 
cannot be tested by observations. 

Neyman developed his theory of confidence intervals only for parameters, 
not for new observations. But Fisher's idea of basing a prediction interval on 

'Another author, George Baker, also published this result in 1935, but he was 
much less influential than Fisher. 
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the t-distribution gained some currency, especially after the appearance of his 
1956 book. The idea often appears in books on linear regression and it also 
appears in the 1974 textbook by Cox and Hinkley. 

Fisher's discussion concerned a single prediction, not a sequence of predic- 
tions, and he seems not to have realized that the confidence predictor (8.10) 
makes errors independently at  different trials and that the chosen significance 
level E therefore has a clear frequentist interpretation as the limiting frequency 
of errors. As we saw in $8.5, prediction intervals (8.10) cover the true z, with 
the correct frequency E in the long run in a natural learning protocol. More 
generally, (10.9) holds from 1 = 2 onwards in the sense that there exists a 
sequence fi of independent random variables having the t-distribution with 
1 - 1 degrees of freedom, 1 = 2,3,. . . , such that 

this has a plethora of frequentist implications. It is true, however, that the 
conditional distribution of 51 given 21,. . . , zl is normal rather than Student's. 

Tolerance regions 

Tolerance regions (or, more fully, statistical tolerance regions) were introduced 
in the 1941 paper by Wilks as a tool of induction. Wilks was motivated by 
Walter Shewhart's (1931) ideas about industrial mass production. 

In this subsection we are only interested in the case where objects are 
absent and Z = Y is a Euclidean space. For simplicity we will only consider 
tolerance regions under the randomness assumption with the additional as- 
sumption that the probability distribution generating the individual examples 
is absolutely continuous (i.e., has a density w.r. to the Lebesgue measure), al- 
though there have been a lot of work for other statistical models and for 
discontinuous distributions. 

Let E, 6 E (0,l).  A measurable function 

(cf. (2.6) on p. 19) is called an (E, 6)-tolerance predictor2 if 

inf Q' ((21,. . . , ~ 1 )  E Z' : Q(r(z l , .  . . ,zl)) 2 1 - E )  = 1 - 6 , 
Q 

where 1 E N and Q ranges over the absolutely continuous probability distri- 
butions on Z. If E and 6 are small, the output F(zl , .  . . , q) of the tolerance 

2 ~ o r e  standard terms are, e.g., "1 - 6 tolerance region for a proportion 1 - E" 

(Fraser 1957) or "(1 - €)-content tolerance region at confidence level 1 - 6" (Fraser 
and Guttman 1956), but we prefer a simpler name. 



10.2 Transductive learning 257 

predictor can be used for predicting the future zi, i = 1 + 1 , 1 +  2,.  . . : the 
prediction is that zi r ( z l ,  . . . , 21). 

Wilks (1941) constructed tolerance predictors in the one-dimensional case 
and Wald (1943) extended Wilks's procedure to the multi-dimensional case. 
Wald's construction was generalized by Tukey (1947) and then further ex- 
tended by, among others, Fraser (1951, 1953) and Kemperman (1956). 

There is a transductive variety of tolerance regions (see Fraser and 
Guttman 1956, Fraser 1957, Guttman 1970; now they are referred to as 
prediction regions or prediction sets), and the ideas for constructing inductive 
tolerance regions carry over easily to the transductive case. 

Let E E (0,l). A measurable function (10.10) is called an €-tolerance pre- 
dzctor3 if 

where 1 E N and Q ranges over the absolutely continuous probability distri- 
butions on Z. We will only give a version of Tukey's (1947) construction of 
+tolerance predictors (although Tukey was interested in (E, S)-tolerance pre- 
dictors). Tukey's predictor is essentially the conformal predictor determined 
by the following nonconformity measure. 

For each n = 1,2, .  . . , fix a sequence of measurable functions $,,k : Z -+ R, 
k = 1,. . . , n, and a sequence of real numbers a,,l,. . . ,a,,,. We will assume 
that the Lebesgue measure of z E Z satisfying $n,k(z) = c is zero for all n, 
k, and c E R. For any sequence 21,. . . , z, of n examples, the corresponding 
nonconformity scores (2.15) (p. 25) are defined as follows. Assign the noncon- 
formity score a,,l to all zi at which max (zi) is attained and discard these 
zi. Then assign the nonconformity score a,,z to all zi at which max$,,a(zi) 
is attained and discard these zi. Repeat this procedure, finally assigning the 
nonco'nformity score a,,, to all zi at  which max$,,,(zi) is attained; if there 
are no zi left at some stage, do nothing. (With probability one, at  each stage 
 ma^$,,^ will be attained at exactly one zi.) 

Tukey proved a general result showing, in particular, that at  each signifi- 
cance level E the conformal predictor just described satisfies (10.11), provided 
E has the form i/(l+l) for an integer i. Fraser (1951) noticed that we can allow 
$,,k to depend on the maxima reached by $,J,. . . , &,k-1 in the procedure 
for computing nonconformity scores. Kemperman (1956) further noticed we 
can allow dependence on the examples where the maxima were reached, not 
only on the maxima themselves. 

Takeuchi (whose idea is published in a rudimentary form in Takeuchi 1975 
but was explained more fully in his seminars at  Stanford University in the late 
1970s) arrived at  a general notion very similar to that of conformal predictor. 

3 0 r  "1 - E expectation tolerance region" in a more standard terminology (Fraser 
1957). 
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Transduction in statistical learning theory 

Whereas the vast majority of theoretical results in statistical learning theory 
are stated in the inductive framework, transduction was an important source 
of intuition from the very beginning of the theory. For example, the main 
technical tool of the early theory, the so-called "ghost sample" technique (the 
technique is described in, e.g., Vapnik 1998, 84.13, although without using this 
expression), is of transductive nature. The idea of transduction was described 
already in the first monograph (Vapnik and Chervonenkis 1974, Chap. VI, 
@lo-13) devoted to statistical learning theory. In this subsection we will be 
using a more recent exposition, given in Vapnik 1998 (Chap. 8); we will start 
from the simplest result, and discuss a more interesting case after Proposi- 
tion 10.1. 

As in the case of induction (see the description of inductivist statisti- 
cal learning theory in §10.1), we start from a fixed family 3 of measurable 
functions mapping the object space X to the label space Y; we will assume 
IY I < CO. Let Q be a probability distribution on Z and 1 and k be two positive 
integer numbers (the interesting case is where 1 >> 1 and k >> 1). Suppose we 
are given 1 examples zl, . . . , zl and k unlabeled objects xl+l,. . . , xl+k; our goal 
is to predict the latters' labels yl+l,. . . , yl+k. We will say that zl, . . . , q is the 
training set and xl+l, . . . , xl+k is the working set. Vapnik and Chervonenkis 
(see, e.g., Vapnik 1998, Theorem 8.2 and (8.15)) found a function 

such that, for all Q, 1, k, and E E  (O,l), 

Equation (10.13) is a transductive analog of (10.2) (p. 246), and it is 
applied to the problem of prediction in a similar way. Let 6 be a small positive 
constant and suppose that at least one function from 3 provides a good 
prediction rule. If E in (10.12) is reasonably small for given E and training and 
working sets, we can apply the following strategy for predicting yl+l,. . . , yl+k. 
Choose a function f = f E 3 with the smallest 

(which typically means choosing an f with the best performance 
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on the training set); (10.13) implies that, unless an unlikely (of probability at 
most e) event has occurred, the frequency of errors 

on the working set will be bounded by (10.14). 
Kolmogorov's objection (mentioned on p. 255) to Fisher's fiducial proba- 

bilities is also applicable to the Vapnik-Chervonenkis approach to transduc- 
tion: it appears that we should be interested in the conditional probability 
given 21 , . . . , 21 (and perhaps also xl+l, . . . , xl+k) that the bound (10.14) is 
satisfied. One important advantage of conditional probabilities, however, does 
carry over to the bound (10.14). Let e be a small positive constant (the prob- 
ability of error we are willing to tolerate), 21 = (XI, yl), 22 = (x2, y2), . . . 
be the observed sequence of examples, and 11,12,. . . be a strictly increas- 
ing sequence of positive integers. Consider the following scenario of repeated 
Vapnik-Chervonenkis transduction. First we are given examples 21, . . . , q, 
and are asked to predict the labels of new objects xl,+l,. . . , XL,. We know 
that the bound (10.14), where 1 := l1 and k := l2 - 11, will hold with prob- 
ability e. Next we are told the true labels for xll+l,.  . . ,x12, so we now know 
the full examples 21,. . . , q,. We are asked to predict the labels of new ob- 
jects xl,+l, . . . , xl, . We again know that the bound (10.14), where 1 := 12 and 
k := l3 - 12, holds with probability E .  We are now told the true labels for 
xl2+1, . . . , xl3, etc. If e were an upper bound on the conditional probability 
that the bound (10.14) holds, we could deduce from the martingale strong 
law of large numbers that the limiting (in the sense of lim sup) frequency with 
which the bound (10.14) is violated does not exceed e. Vapnik and Chervo- 
nenkis's result (10.13) by itself does not prevent this limiting frequency (even 
in the sense of liminf) from being 1. However, using our standard methods we 
can deduce the following proposition, which asserts much more, namely, the 
conservative validity of the procedure based on (10.14) in the on-line protocol. 
Let err; be 1 if the bound (10.14) holds for the training set 21,. . . , zln and 
the working set xl,+l,. . . , xl,,, , and let it be 0 otherwise. 

Proposition 10.1. Let e E (0,l).  Suppose (10.13) holds with Q1+k replaced 
by any exchangeable probability distribution P on z '+~, for all 1 and k. In the 
on-line transduction protocol described above, err;, n = 1,2, . . . , are domi- 
nated in distribution by independent Bernoulli random variables with param- 
eter e; in particular, 

The condition of the proposition ((10.13) holding with Ql+k replaced by any 
exchangeable probability distribution on z ' + ~ )  is satisfied for the usual choices 
of the function E in (10.12); for details, see $10.4. 

The simplest case of Vapnik-Chervonenkis transduction is not very in- 
teresting from the point of view of statistical learning theory: for example, 
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the chosen prediction rule f" does not usually depend on the working set. 
Our analysis, however, can be easily extended to more advanced results, such 
as (8.35) in Vapnik 1998. In the rest of this section we will briefly describe 
the procedure of "structural risk minimization" in the case of transduction. 

Suppose for each choice of the training set X I , .  . . , xl of objects and the 
working set xl+l,. . . , xl+k we have a representation of the function class 3 as 
the union of an increasing sequence of function classes 

(depending only on the combined set, or more accurately bag, lxl , .  . . , X ~ + ~ J ) .  
For example, the classes 3~"1'""x"k5 for small r may consist of the functions 
that separate the combined set 2x1, . . . , x ~ + ~ J  with a large margin (as in Vap- 
nik 1998, 38.5, Vapnik and Chervonenkis 1974, sVI.10). Suppose we have a 
function 

E = E(E, 1, k, 1x1, .. . ,xl+kJ, P, r )  

such that, for all 1 and k, all exchangeable distributions P on z ~ + ~ ,  and all 
E E (0, I) ,  

(for examples of such E, see Vapnik 1998, Theorem 8.4 and (8.35), and Vapnik 
and Chervonenkis 1974, Theorem 6.2). 

Equation (10.16) is used for prediction in .a more interesting way than 
(10.13). Let E be a small positive constant. To predict yl+l,. . . , yl+k, choose 
r and a function f = j E 3, with the smallest 

(10.16) implies that, unless an unlikely (of probability at  most E) event has 
occurred, the frequency of errors (10.15) on the working set will be bounded 
by (10.17) (with f replaced by f). It is easy to check that Proposition 10.1 
can be stated and proved for this "structural risk minimization" framework. 

PAC transduction 

The main work on transduction in the PAC tradition was done by Haus- 
sler, Littlestone, and Warmuth (1994); it will be described in this subsection. 
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Following Haussler et al. (1994) we assume that the label space is binary, 
Y = (0, I), and fix a class 3 of functions of the type X -+ Y of finite VC 
dimension. For simplicity, we will also assume that the object space X is fi- 
nite and that the probability distribution Q E P(Z)  generating the individual 
examples satisfies Q({x, y)) > 0 for all (x, y) E X x Y. 

In the model considered by Haussler et al. (1994), and adopted in this sub- 
section, the examples are generated by the power probability distribution Q" 
with the probability distribution Q assumed compatible with 3 (i.e., Q is such 
that, for some f E 3, f (x) = y for all (x, y) E Z). Because of the restriction 
to probability distributions compatible with 3, we will have to modify the 
definition of a conformal predictor. The 3-conformal predictor determined by 
a nonconformity measure (A,)  is the following confidence predictor: (2.17) 
(p. 26) is defined to be the set of all labels y E Y such that 

0 the data sequence (XI, yl, . . . , x,-1, y,-l, x,, y) is compatible with 3, in 
the sense that there exists f E 3 such that f (xi) = yi, i = 1, . . . , n - 1, 
and f ( 4  = Y, 

0 (2.18) holds, where the nonconformity scores ai are defined by (2.19). 

The smoothed version of this definition can be given and the analogues of 
Propositions 2.3 and 2.4 proved. Theorem 2.2 in Haussler et al. 1990 (an 
early version of Haussler et al. 1994 that explicitly states several key results) 
can be restated in the following way: 

Proposition 10.2 (Haussler, Littlestone, and Warmuth). Let 3 be a 
class of (0,l)-valued functions on X of finite VC dimension; consider the 
variable significance level en := 2 VC(3)ln. There exists an 3-conformal pre- 
dictor r such that for any sequence (XI, yl,x2, y ~ ,  . . . )  of examples there are 
no multiple predictions: 

Of course, the statement of the proposition is of interest only for sequences 
of examples that are compatible with 9: there is f E 3 such that yi = f (xi), 
i = 1,2,. . . . The proposition will be proved in 810.4. 

The restatement given by Proposition 10.2 sheds new light on the perfor- 
mance of Haussler et al.'s procedure in repeated trials (see the discussion at 
the end of $2 in Haussler et al. 1994, in particular Corollary 2.2): the indepen- 
dence of the errors at  different trials allows us to use the powerful machine of 
probability theory. We will only give two examples. 

The on-line 3-conformal predictor r whose existence is asserted in 
Proposition 10.2 never makes multiple predictions at the significance level 
2VC(3)/n, and so the only measure of its performance at  this level is the 
number of errors 

2VC(F)/n Err, := Err, (r) 
it makes. The law of the iterated logarithm (p. 287) implies that, 
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Err, -2 VC(3) Inn 
lim sup 1 1 a.s. 

n+w 2 2 / V ~ ( 3 )  ln n ln ln In n 

Poisson's theorem (see, e.g., Shiryaev 1996, Theorem 111.3.4) shows that the 
distribution of the cumulative number of errors  err^ - ErrrNpl in the second 
half of the first N trials is asymptotically dominated, as N -+ m, by the 
Poisson distribution with the parameter (2 In 2) VC(3). 

Why on-line transduction makes sense 

The fact that traditional off-line learning theory is inductive is not purely 
accidental: for reasons that we will now discuss, transductive learning is rel- 
atively ill-suited to the off-line framework. Only in the on-line framework do 
the error probabilities guaranteed by the theory find their manifestation as 
frequencies. 

Suppose we are interested in the quality of an algorithm that takes exam- 
ples 21,. . . , zl and an object x, and outputs a prediction set F(z1,. . . ,zl, x) 
for x's label y. In the case of conformal prediction, we might fix a significance 
level E and set 

qz1,. . . , zl, X) := r y z l , .  . . , zl, X) 

for some conformal predictor r. In the case of statistical learning theory, we 
might find a prediction rule f, ,,...,,, : X -+ Y for each sequence 21,. . . , zl and 
set F(z1, . . . , zl, x) to the one-element set { f, ,,...,,, (x)). 

From an inductive viewpoint, F is a reliable predictor if there are small 
positive constants E and S such that, for all probability distributions Q on Z, 

From a transductive viewpoint, F is reliable if there is a small positive constant 
E such that, for all probability distributions Q on Z, 

In other words, in the inductive approach we are interested in the random 
variable 

J = J ( a ,  22,. . .) := Q { ( x , ~ )  : Y $ F(zi , .  . . ,a, x)) 

(we want it to be small with high probability), whereas in the transductive 
approach we are interested in the expected value IEt of t over the random 
choice of the training set zl, . . . , zl. Is this averaging over different training sets 
appropriate? It is generally agreed that in the off-line framework knowing IE J is 
only marginally useful; as Devroye et al. (1996, p. 2) put it, "this number would 
indicate the quality of an average data sequence, not your data sequence". 
Kolmogorov's objection against Fisher's fiducial probability (p. 255) is also a 
version of this general inductivist objection, as we call it. 
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We will discuss separately two aspects of the inductivist objection, one 
more practical and the other more philosophical. Both aspects are very con- 
vincing in the off-line framework and both weaken in the on-line framework. 

The practical aspect of the inductivist objection is that the knowledge that, 
say, IEE = 5% does not mean that we will be wrong in 5% of cases applying 
F(z1,. . . , z,, x) to many new examples (x, y) generated independently from 
Q. Indeed, it might happen that, e.g., 5 = 0 with probability 0.75 and 5 = 20% 
with probability 0.25. If our training set is one of the one-in-four unlucky ones, 
we will make errors in 20% of all cases. The average probability 5% reflects 
what might have happened at  the stage when 21,. . . , zl was generated, but 
we are interested in our particular 21,. . . , zl: is it a lucky one? 

The philosophical aspect of the inductivist objection is that we want to 
know the true error probability. The average probability IEJ ceases to be 
the true error probability as soon as the training set 21,. . . , zl is generated. 
We should condition properly on what we already know. In the off-line setting 
the philosophical aspect also has a practical side: feeding F(zl , .  . . , z,, x) with 
sufficiently many new examples (x, y), we might hope that the truth will be 
eventually (at least in the limit) revealed to us, and any deviation from the 
truth will become visible and practically significant. 

There is a chance, of course, that even a predictor satisfying (10.19) will 
mislead us and the actual probability of error will exceed t. But the situation 
here appears under control: we know that we can be misled only with a low 
probability, S. 

Things change in the on-line setting, where we take (21,. . . , zl) := 
(zl,. . . , z ~ - ~ )  and (x, y) := z, for n = 1,2, .  . . . As the practical aspect is 
concerned, we know from Chap. 2 that, in the case of conformal prediction, 
the error probability t in (10.20) translates with high probability into the fre- 
quency of errors less than or close to t. (Moreover, as we know from Chap. 4, 
it is sufficient to have some, maybe quite limited, supply of fresh examples, 
not necessarily arriving at each trial.) On the other hand, (10.19) becomes 
difficult to interpret when it is applied at every trial. 

The notion of a true probability distribution becomes much murkier in the 
on-line framework. Even if we do choose a prediction rule, it becomes updated 
very quickly, and we simply do not have time to discover the truth. 

Let us illustrate this on the simplest situation, where x, are absent and 
Y = {0,1}. Suppose p  is chosen randomly from the uniform distribution 
on [ O , 1 ]  and then zl, zz, . . . are generated independently from the Bernoulli 
distribution B p  with parameter p. The mixture B := B F d p  is Laplace's rule 
of succession (mentioned earlier in $6.3 and going back to Laplace 1774), which 
can be described in terms of its conditional probabilities: the B-probability 
that zl+l = 1 given 21,. . . , zl is (k + 1)/(1+ 2), where k is the number of 1s 
among 21,. . . , q. What is the true probability that zl+l = 1 given 21,. . . , q? 
Is it p or is it (k + 1)/(1 + 2)? The answer seems to depend on whether 
we first generated p  and then generated the data from B F  or we generated 
the data directly from B. There is no way, however, to tell from the data 
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alone in which of these two ways they were generated. It might even happen 
that only part of p was generated: e.g., we first chose randomly an interval 
[i/10, (i + 1)/10], i = 0,. . . ,9, and then generated the data from the mixture 
(1110) ~y ; tn l ' / l~  BFdp. 

If we'&ply the Venn predictor, [k/(l + I), (k + 1)/(1+ I)], to estimate the 
probability that zl+l = 1 in the situation of the previous paragraph, it is true 
that there is a good chance that the interval [k/(l+ I), (k+ 1)/(1+ I)] will not 
cover the probability p (the typical distance between this interval and p has 
the order of magnitude 1-'I2). This interval, however, always covers another 
probability, Laplace's (k + 1)/(1+ 2). What matters is whether our predictor 
is valid and efficient, not what it claims to tell us about unobservable aspects 
of the genesis of the data. 

10.3 Bayesian learning 

The Bayesian approach to learning was suggested independently by Thomas 
Bayes, in a paper published posthumously in 1763, and by Pierre Simon 
Laplace, in a memoir published in 1774 (Stigler 198613). Since then it has 
always had its advocates, but it has become particularly popular in the last 
third of the twentieth century. The main idea of the Bayesian approach is 
to complement whatever model (PO : 8 E 0) for the data we might have 
by a new component (the prior p(d8) for the parameters) so that a com- 
plete probability distribution, Pep(dO), for the data is obtained. With this 
probability distribution, the problem of prediction can be solved automati- 
cally by computing predictive distributions for new examples; learning from 
experience is also done automatically by applying Bayes's theorem. There- 
fore, the Bayesian approach is formally outside the scope of this book, which 
is about learning under uncertainty and does not assume the knowledge of 
the probability distribution for the data. It is still informative, however, to 
look at how the Bayesian approach for different plausible probability distri- 
butions compares with our approach; this is what we will do in this section. 
When the chosen probability distribution is the real one generating the data 
(realistically, we can know this only for artificial data sets that we ourselves 
generate), the Bayesian method can be counted on to give valid results; we 
will see in this section how the validity of those results is affected when the 
chosen distribution is wrong. By the results of Chaps. 2-4 conformal predic- 
tors, even if motivated by Bayesian considerations (we will see that RRCMs 
can be interpreted this way), are automatically valid. 

Bayesian ridge regression 

We start by giving a standard Bayesian derivation of the ridge regression esti- 
mator; this derivation will also provide us with the full conditional distribution 
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for the new label yl+l. As usual, we have training examples (xl, yl), . . . , (xl, yl) 
and a new object xl+l, and our goal is to predict yl+l; the object space is 
X = RP. Let us assume that the objects XI,  x2,. . . are fixed (deterministic) 
and the labels y1, y2, . . . are generated by the rule 

(already encountered on pp. 35 and 201), where w is distributed as No,(,a/a)Ip, 
each & is distributed as No,,2, and all these random elements are independent. 

The posterior density of w is proportional to 

It attains its maximum at  the w, which we will denote 'Lir, that solves the 
optimization problem (2.25) (p. 29, with n = l ) ,  i.e., at the value given by the 
ridge regression procedure. 

Using the notation Xl and K introduced in Chap. 2 (see (2.26) and (2.27) 
on p. 30), we can rewrite the right-hand side of (10.22) as 

This can be recognized as the multivariate normal distribution with mean 'Lir 
and variance matrix V := a2(XiXl + aIP)-l (see, e.g., Shiryaev 1996, 511.13); 
we are primarily interested, however, not in the parameter w but in the next 
label 

M+i = w . xl+i + &+I . 
The conditional distribution of w xl+l (given the training examples) is 

(the expression for 'Lir is from (2.29); we write N(p, a2 )  for N,,,z if the expres- 
sion for p or a2 is complicated). The assumption of independence now gives 
the conditional distribution 
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All our experiments will be performed for the Bayesian procedure given 
by (10.24), but for completeness we will also give a kernel version of this 
procedure. It is possible to rewrite (10.24) in the kernel form using the matrix 
equation (2.39) (p. 35), similarly to what we did in Chap. 2 to derive the 
kernel representation of RRCM. (This is done in Melluish et al. 2001a and 
Melluish 2005.) It is easier, however, to compute the predictive distribution 
for yl+l directly. Namely, it is easy to see that the covariance between yi and 
yj (i, j = 1,. . . , 1 +  1) under the model 

(which is (10.21) in the feature space; we are using the same notation as in 
52.3 for the mapping F : X --+ H to the feature space and for the kernel K) 
is given by 

u2 
COV(Y~, ~ j )  = xi, xj) + u2~1i,j ; (10.25) 

therefore, the theorem on normal correlation (see, e.g., Shiryaev 1996, Theo- 
rem 11.13.2) gives the predictive distribution 

for yl+l, where Kl and kl are essentially the same matrix and vector as in 
(2.41) (P. 36): (Kl)i,j := K(x~,x.~),  i , j  = 1,. . . , l ,  (k1)i := K ( x ~ + ~ , x ~ ) ,  i = 
1, . . . , I, and lC is defined by (2.42). 

It is clear that at each significance level E the shortest prediction interval 
is the one symmetrical w.r. to the ridge regression prediction &+I. Namely, 
(10.24) gives the prediction interval 

with 
&+I := (Xi& + ~ I ~ ) - ~ X , ' K ,  

q2 := a 2 x ; + l ( ~ i ~ l  + a ~ ~ ) - ~ x ~ + ~  + u2 , 
(10.28) 

and (10.26) gives the prediction interval (10.27) with 

Remark We assume in this section that the variance of the noise Ji is known, 
since there are serious problems with "conjugate analysis" (the most analyti- 
cally convenient variety of Bayesian learning) for the linear regression model 
(see, e.g., O'Hagan 1994, 59.41). This assumption will be satisfied in all our 
experiments. 
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Experimental results 

In this subsection we will experimentally compare Bayesian ridge regression 
with the basic RRCM with the raw residuals as nonconformity scores: 

(as on p. 30). It appears that the only realistic way to ensure that the Bayesian 
assumptions are satisfied is to generate the data set artificially, and this is what 
we do here. (Even the assumption of exchangeability is rarely satisfied for real- 
world data sets, but at  least we have a simple and relatively nondestructive 
way to ensure it by permuting the data set.) 

We generated a set of 506 examples with 13 attributes and one label (these 
numbers were chosen to make the results comparable to those obtained for 
the Boston Housing data set) as follows: first, a weight vector w E W13 was 
generated from  no,^,, , then the objects XI ,  . . . , xsos E IRI3 were indepen- 
dently generated from the uniform distribution on [-I, 1]13, and finally the 
labels yl, . . . , Y506 were generated from (10.21), where the random variables 
&, distributed as NOJ, were independent between themselves and of w and 
the objects. Therefore, the true values of a and a are 1. 

Both RRCM and Bayesian ridge regression can be said to depend on the 
true mechanism generating the data, but in different ways: Bayesian ridge 
regression uses the true mechanism directly, whereas RRCM uses it only for 
a rational choice of the nonconformity measure. 

In Chap. 3 we considered empirical calibration and performance curves 
for the case of classification (Fig. 3.5 on p. 64). Similar curves for RRCM 
are shown in Fig. 10.1. The empirical calibration curve is defined exactly as 
before: for each significance level E we show the percentage of errors made by 
the RRCM at this level on all 506 examples processed in the on-line fashion 
(cf. (3.16) on p. 64). The empirical performance curve is defined slightly dif- 
ferently: for each significance level E we give the median width of prediction 
intervals (i.e., convex hulls of the prediction sets Ti, n = 1,. . . ,506) at  signif- 
icance level E, for all 506 examples. (This is similar to the approach of $2.3, 
see p. 39, and $8.5, but now we are interested in the dependence on E rather 
than in the changes in the median width as new examples are processed.) As 
usual, the empirical calibration curve is close to the diagonal. 

The picture for Bayesian ridge regression ((10.27) with (10.28)) fed with 
the correct parameters a = 1 and a = 1 looks very similar: see Fig. 10.2. 

The similarity disappears when the two algorithms are given wrong values 
for a. For example, let us see what happens if we tell the algorithms that 
the expected value of llwll is just 1% of what it really is (this corresponds to 
taking a = 10000). The RRCM (Fig. 10.3) stays valid, but its performance de- 
teriorates. The performance of Bayesian ridge regression (Fig. 10.4) is hardly 
affected, but its predictions become invalid (the empirical calibration curve 
deviates significantly from the diagonal, especially for the most important 
small significance levels). The worst that can happen to RRCM is that its 
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Fig. 10.1. The empirical performance (left-hand scale) and calibration (right-hand 
scale) curves for RRCM with a = 1 on the artificial data set with a = 1 and a = 1 

Fig. 10.2. The empirical performance (left-hand scale) and calibration (right-hand 
scale) curves for Bayesian ridge regression fed with a = 1 and a = 1 on the artificial 
data set with a = 1 and a = 1 
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Fig. 10.3. The empirical performance (left-hand scale) and calibration (right-hand 
scale) curves for RRCM with a = 10000 on the artificial data set with a = 1 and 

I . . . . calibration curve I , . . .  

significance level 

Fig. 10.4. The empirical performance (left-hand scale) and calibration (right-hand 
scale) curves for Bayesian ridge regression fed with a = 10000 and a = 1 on the 
artificial data set with a = 1 and a = 1 
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- - errors at 95% 

," 

Fig. 10.5. Cumulative numbers of errors at three confidence levels for Bayesian 
ridge regression fed with a = 10000 and a = 1 on the artificial data set with a = 1 
and a = 1 

predictions will become useless, whereas Bayesian ridge regression's predic- 
tions can become misleading. Looking at the cumulative error lines for the 
latter (Fig. 10.5)' we can see that they are still approximately straight but 
have wrong slopes. 

Remark It is interesting that even Bayesian predictors based on the true 
probability distribution for the data do not provide the same guarantees for 
the validity of on-line predictions as the conformal predictors do. Indeed, 
suppose the true value of a is 10000. There is still a small probability that 
the value of the weight vector w will look as if it was generated from No,I 
rather than No,o.oool~. In this case the empirical calibration curve will be like 
that in Fig. 10.4. This behavior, of course, will not be limited to an initial 
segment of the sequence of examples; there will be gross lack of validity even 
asymptotically. 

10.4 Proofs 

Proof of Proposition 10.1 

Vapnik (1998, p. 341) points out that (10.13) (as well as the other results in 
that chapter) can be strengthened. (Equation (10.13) corresponds to Vapnik's 
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"Setting 2", and we are about to describe the less restrictive "Setting 1"; for 
a clear discussion, see Derbeko et al. 2004, $2.1.) 

Fix a bag of size 1 + k of examples and let P be the uniform probability 
distribution on the set of the ( 1  + k)! orderings of that bag. Then (10.13) 
continues to hold if Q'+"S replaced by P. 

We can now apply the method used in the proof of Theorem 8.2 in 88.7. 
It is clear that err; depends on 21,. . . , zl,+, only through lzl, .  . . , zl,J and 
1 ~ ~ , + ~ , .  . . , zl,+,J. Let us increase err; (if needed) using randomization to 
make the probability that err: = 1 precisely E. I t  is sufficient to prove that 
err;, . . . , errfv is a sequence of independent Bernoulli random variables. There- 
fore, it is sufficient to prove that errfv, . . . , err; is a sequence of independent 
Bernoulli random variables. This is done as before, using the fact that the 
conditional probability that err: = 1 given the bag 121, . . . , zln+, J and the 
sequence ~ l , + ~ + l ,  ~1,+,+2,  . . . is equal to E, n = N, . . . ,l. 

Proof of Proposition 10.2 

All technical work is done in Haussler et al. 1994; we will only show how their 
construction fits our framework. 

For any finite sequence of objects (XI, . . . , x,) E X*, consider the following 
1-inclusion graph G(x1, . . . , x,): 

the nodes of G(xl,. . . ,x,) are the subsets S of {XI,. . . ,x,) for which 
there exists f E 3 such that 

1 i f x € S  
= 0 otherwise ; 

there is an edge between two nodes of G(xl, . . . ,x,) if and only if they 
differ in just one element x E X and this element occurs in the sequence 
(21, . . . , x,) only once. 

The following is the result (stated here, as well as in the original paper, some- 
what informally) which will imply Proposition 10.2. 

Proposition 10.3 (Haussler et al. 1990, Lemma 2.6). For any sequence 
of objects (XI, . . . ,x,) E X*, it i s  possible to direct all edges of G(x1,. . . ,x,) 
in such a way that the out-degree of each node is  at most 2VC(3) and the 
direction of the edges does not depend on  the order in which the elements of 
{XI,. . . , x,) appear in (XI , .  . . , x,). 

+ 
For each sequence (XI,. . . , x,) fix a directed graph G(x1,. . . , x,) made from 
G(xl , . . . , x,) in this way. 

Now we can construct the required conformal predictor. Define a noncon- 
formity measure A, as follows (we will omit the argument 

of A,): 



272 10 Perspectives and contrasts 

a if (21, . . . , z,) is not compatible with 3, set A,(zi) := oo, i = 1,. . . , n; 
t 

a otherwise, S := {xi : yi = 1) is a node of G (XI,. . . , xn) (where (xi, yi) := 
zi E X  x Y, i = 1 ,..., n); for each i = 1 ,..., n ,  set A n ( ~ i )  := 1 if 

si := S \ {xi) if xi E S 
S U {xi) if not 

t t 
is a n o d e o f  G(xl ,  ..., x,) and (S,Si) i s a n e d g e o f  G(xl ,  ..., x,); other- 
wise, set An(zi) := 0. 

To see that (10.18) (p. 261) holds, we will argue indirectly. The  negation 
of (10.18) implies that  the pair 

is an  edge of G(xl, . . . , x,). If this edge is directed from (10.29) t o  (10.30) in 
--+ 
G (xl, . . . , x,), 0 will not be  included in rz (21, . . . ,z,-1, x,); if it is directed 
from (10.30) to  (10.29), 1 will not be  included in I'z (21, . . . ,z,-1, x,). In  any 
case, the prediction will not be multiple. 

10.5 Bibliographical remarks 

Inductive prediction 

Our historical'survey of induction follows, to a large degree, Stigler 1986a (Chap. 2). 
Some modern approaches to bounding the Bernoulli parameter p given a data 
sequence are described by Brown et al. (2001). For reviews of attempts to im- 
prove Jacob Bernoulli's N(0.02,1/1001,0.6), see Prokhorov 1986 and Sheynin 2003. 
Barnard's words were quoted second-hand after Picard and Berk (1990). 

Different versions of the Glivenko-Cantelli theorem were proved by Cantelli 
(1933), Glivenko (1933), and Kolmogorov (1933b), whose articles were published 
in the same volume of the same journal (for details and further developments, see 
Vapnik 1998, Comments and Bibliographical Remarks). 

For a review of results about the VC dimension of different classes of neural 
networks, see Devroye et al. 1996 ($30.4) and Anthony and Bartlett 1999. 

The study by Langford (2004), already mentioned in Chap. 1, found that the 
hold-out estimate performs much better than the sample compression bound and 
PAC-Bayes bounds on several data sets. These data sets are low-dimensional, but one 
can expect the advantage of the hold-out estimate to become even more pronounced 
as the number of attributes grows. It should be borne in mind that Tables 5.2 and 
5.3 in that paper are not based on rigorous bounds on the true error rate of the 
learned classifier (as the author explains in $5.3.1). 
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Transductive prediction 

For a good review of tolerance regions see Guttman 1970. 
After the discussion of transduction had been published in Vapnik and Chervo- 

nenkis 1974 for the case of classification, it was extended by Vapnik (in the English 
translation of Vapnik 1982) to regression. For simplicity, Vapnik and Chervonenkis 
(1974) discuss only the case where the sizes of the training and working sets coin- 
cide, I = k ;  this restriction was removed by Vapnik and Sterin (1977). For a recent 
development of the Vapnik-Chervonenkis theory of transduction, see Derbeko et  al. 
2004. 

Haussler et  al. (1994) proved an analog of Proposition 10.2 for a smoothed 
version of F-conformal predictor, replacing the variable significance level 2 VC(F)/n 
by VC(F)/n. They showed that the latter expression is optimal to within a constant 
factor (namely, to within a factor of 2), and Li et  al. (2001) showed that it is optimal 
to  within a factor of 1 + o(1). 

Our philosophy of probability is described in detail in Shafer and Vovk 2001. It 
holds that probabilities are given an empirical interpretation by assuming that no 
one who gambles against them without risking bankruptcy will multiply their initial 
capital by a large or infinite factor. 

Bayesian prediction 

In 510.3 we discussed the differences between our approach and the Bayesian ap- 
proach only in the case of regression. We were mainly following the paper by Melluish 
et al. (2001b), which also considers classification. 

The theorem on normal correlation, which we used in the derivation of the 
kernel representation of Bayesian ridge regression, is known in geostatistics as simple 
kriging (see, e.g., Cressie 1993, p. 110). The name "kriging" was coined by Matheron 
(1963) after the South African mining engineer Krige, but the method itself is not 
due to Krige (Cressie 1993, p. 106). 

The simulations reported in 310.3 begin with artificial data sets, since it seems 
very difficult to  arrive at a suitable statistical model and prior for naturally occurring 
data sets. Experiments with the latter are attempted in Melluish et al. 2001b. 



Appendix A: Probability theory 

In this appendix we will give some basic definitions and results of probability 
theory needed for core results in this book. It is not suitable for a first study; 
our main goal is to familiarize the reader with our terminology and notation. 
The reader who needs an introduction to this material is advised to consult 
existing excellent textbooks such as Shiryaev 1996 and Williams 1991 (' m our 
brief review we usually follow Kolmogorov 1933a, Shiryaev 1996, and Devroye 
et al. 1996). We will rarely give any proofs (and the proofs that we do give 
will sometimes use notions not defined and results not stated here). This 
appendix does not treat topics (such as linear regression and Markov chains) 
that are needed only for applications of this book's core results; references to 
the relevant literature are given in the main part of the book. 

Our exposition is based on Kolmogorov's measurotheoretic axioms of 
probability. The recent suggestion by Shafer and Vovk (2001) to base proba- 
bility theory on the theory of perfect-information games rather than measure 
theory would have certain advantages, but we preferred the more familiar 
approach. 

A.l  Basics 

Kolmogorov's axioms 

A a-algebra 3 on a set R is a collection of subsets of R which contains Q) and R 
and is closed under the operations of complementation and taking finite and 
countable unions and intersections. A measurable space is a set R equipped 
with a a-algebra 3 on R (so formally the ( 0 ,  3) is a measurable space; we 
will, however, often refer to R as a measurable space when 3 is clear from 
the context). The elements of 3 are called measurable sets in 0. A a-algebra 
3' such that 3' C 3 is called a sub-0-algebra of 3. 

For any family A of subsets of a set R there exists the smallest a-algebra 
3 on R such that A 3 (take as 3 the intersection of all a-algebras that 
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include A). The smallest a-algebra on the real line R containing all intervals 
(a, b) is called Borel. Similarly, the smallest a-algebra on [-m, m] containing 
all intervals (a ,  b) and the one-element sets {-m) and {m) is called Borel. 
(More generally, the Borel a-algebra on a topological space is defined as the 
smallest a-algebra containing all open sets.) When considered as measurable 
spaces, R and [-m, m] will always be assumed equipped with the Borel a- 
algebra. 

A measurable space is Borel if it is isomorphic to a measurable subset of 
the interval [0, 11. The class of Borel spaces is very rich: for example, all Polish 
spaces (such as finite-dimensional Euclidean spaces Rn, RW, functional spaces 
C and D) are Borel; finite and countable products of Borel spaces are also 
Borel (see, e.g., Schervish 1995, sB.3.2). 

A probability distribution on a measurable set (R ,F)  is a function P : 
3 + [O, 11 such that: P(R) = 1; 

for all disjoint A, B E 3; and 

P IJ Ai = lim P(A,) I, ) "%-- 

for all nested sequences A1 C A2 C . - of sets in F. 
The main object studied in probability theory is a probability space 

(R, 3, P),  where ( 0 ,  F )  is a measurable space and P is a probability distri-. 
bution on (0, F) .  The elements of F (i.e., the measurable sets in 0 )  are also 
called events. A function J : R + Z, where 5' is another measurable space, 
is called measurable, or a random element in s", if, for every measurable 
set A C 5 ,  the pre-image f-'(A) C 52 is measurable; we will say that J is 
F-measurable if the a-algebra on R has to be mentioned explicitly. Two im- 
portant special cases are: random elements in R are called random variables, 
and random elements in [-m, m]  are called extended random variables. The 
a-algebra on R generated by a random element J : R --+ 5 consists of all 
events of the form J-'(A), A ranging over the measurable sets in 5'. The 
distribution of a random element 5 in S is the probability distribution PC-' 
on E which is the image of P under the mapping J: 

for all events E C 5'. An event E is almost certain if P (E)  = 1; a property of 
w E R holds almost surely (often abbreviated to "a.s.") if the event that this 
property is satisfied is almost certain. 

A statistical model is a family of probability distributions (Po : 8 E Q) on 
the same measurable space (called the sample space) indexed by the elements 
8 of some parameter space Q. Statistical models are the standard way of 
modeling uncertainty. 
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Convergence 

There are many senses in which a sequence of random variables J1, E2, .  . . can 
converge to a number c E R, but in this book we will only be interested in 
the following two. We say that J1, J2, . . . converges to c in probability if 

lim P { w  E 0 :  I&(w) -cI > E )  = 0 
n--400 

for any E .  The other notion of convergence is where J1, J2, . . . converges to c 
almost surely. Convergence almost surely implies convergence in probability. 

A.2 Independence and products 

Let ( 0 , 3 ,  P )  be a probability space. Sub-a-algebras 31,. . . , Fn of 3 are said 
to be independent if, for any choice of events A1 E 31,. . . , A, E Fn, 

The sub-a-algebras in an infinite sequence 31, F2,. . . are independent if, for 
any n = 1,2,. . . , the sub-a-algebras 31,. . . , 3, are independent. The random 
elements in a sequence, finite or infinite, & ,  J2, . . . are independent if the sub- 
a-algebras 31,32, .  . . generated by &, &, . . . , respectively, are independent. 

Products of probability spaces 

If (21, 31, Q1), . . . , (Z,, F,, Q,) is a finite sequence of probability spaces, the 
product 

is defined as follows: 

0 0 is the Cartesian product ny=l Zi; 
0 3 is the smallest a-algebra on 0 containing all Cartesian products 
Hz, Ai, where Ai E 3 i  for all i; 

0 P is defined as the only probability distribution on ( 0 , 3 )  such that 

for all Ai E Ti, i = 1, . . . , n. 
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Analogously, the product 

of an infinite sequence of probability spaces (Z1,3i, QI), (Z2,32, Q2), . . . is 
defined as follows: 

0 0 is the Cartesian product nzl Zi; 
0 3 is the smallest a-algebra on 0 containing the Cartesian product H z l  Ai 

for every sequence A1 E 31, A2 E 3 2 , .  . . such that Ai = 0i from some i 
on; 

0 P is defined as the only probability distribution on ( 0 , 3 )  such that 

for all n = 1,2,. . . and all sequences Ai E i = 1,.  . . , n. 

Notice that the random variables 

on the product ny=l (Zi, Fi ,  Qi) are independent; the random variables 

on the infinite product I1zl (Zi, Fi, Qi) are also independent. 
Our notation for the elements of the product probability spaces will be 

(where we allow n = m),  or, with the short-hand notation for measurable 
spaces, 

When all the probability spaces (Zi, Qi) coincide, (Zi, Qi) = (2, Q) for all i, 
we will write (Zn, Qn) for the product ( n L 1  Z, nGl Q) and call it the nth 
power of (2, Q), with just 'power" meaning "mth power". 

Randomness model 

Now can introduce one of the two main statistical models used in this book, the 
randomness model. The underlying measurable space is composed of infinite 
data sequences: it is the product Zoo, where Z is the measurable space from 
which examples are drawn. The randomness model is defined to be the set 
of all power probability distributions QW, Q ranging over the probability 
distributions on Z. 
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A.3 Expectat ions and conditional expectations 

Fix a probability space (R, 3, P). If J : 0 + R is a nonnegative random 
variable and A E 3 is an event, the Lebesgue integral JA J(w)P(dw) is defined 
to be 

00 

(this limit always exists but can be infinite). If J 2 0 is an extended random 
variable, the integral is defined in the same way if P(A n {J = 00)) = 0 and 
is defined to be co otherwise. For an arbitrary (extended) random variable J 
we set 

J, J(w)P(dw) := J, J+(w)p(dw) - J, J- (w)~(dw) , 

provided at least one of J,J+(w)~(dw), SAC-(w)P(dw) is finite; if both 
are infinite, JA J(w)P(dw) does not exist. A shorter alternative notation for 
JA J(w)P(dw) is JA JdP, with Jo JdP  abbreviated to J JdP. When the prob- 
ability space ( 0 , 3 ,  P )  is clear from the context, we will write E J for J JdP; 
Ep J is synonymous with J JdP. (Similarly, we will sometimes write P(A) or 
Pp(A) for P(A) .) 

Let G C 3 be a sub-0-algebra of 3 and J be a nonnegative extended 
random variable. The conditional expectation E(J 16) of J w.r. to G is defined 
to be a 9-measurable extended random variable such that, for any A 9, 

(any two 8-measurable extended random variables satisfying this condition 
coincide almost surely; they will be referred to as versions E(J I B)). For 
general extended random variables J, define 

this definition will be used only when 

There may be many versions of IE(J I G), but any two of them coincide almost 
surely. 

In this book we use the following properties of conditional expectations 
(for proofs of the first two of these see, e.g., Shiryaev 1996, 511.7.4; the third 
is obvious): 

1. If G is a sub-0-algebra of 3, J and q are bounded random variables, and 
q is B-measurable, 

E(qJ I B) = vE(J I S) 
almost surely. 
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2. If G1 and G2 are sub-a-algebras of 3, 61 C G2 G 3, and 5 is a random 
variable, 

IE(IE(E 1 82) 1 GI) = E(E I GI) 
almost surely; in particular, for any sub-a-algebra G of 3, 

3. If G is a sub-a-algebra of 3, ( is a nonnegative random variable, (Pe : 8 E 
O) is a statistical model with O a measurable space such that the function 
0 H Pe(E) is measurable for any event E, p is a probability distribution 
on 0, and P = S Pep(d0) is the mixture of the probability distributions 
Pe , then 

WE I G) = JIEP.(E I G)PW 

almost surely (the underlying probability distribution is given as a lower 
index). 

For an event A E 3 and a sub-a-algebra G 2 3, the conditional probability 
P(A I G) is defined as the conditional expectation ~ ( 1 ~  I 9) of A's indicator 
function. We sometimes write IE(5 1 q) (resp. P(A 1 q)), where q is a random 
element, to mean lE(J 19) (resp. P(A I G)) where G is the c-algebra generated 
by 7. 

A.4 Markov kernels and regular conditional distributions 

Let R and Z be two measurable spaces. A function Q(w, A), usually written 
as Q(A I w), where w ranges over R and A over the measurable sets in Z,  is 
called a Markov kernel if: 

0 as a function of A, Q(A I w) is a probability distribution on Z,  for each 
w E R; 

0 as a function of w, Q(A I w) is measurable, for each measurable A 5 Z. 

We will say that Q is a Markov kernel of the type 0 v Z, using v to dis- 
tinguish Markov kernels from functions of the type R --+ Z. Unlike functions, 
Markov kernels map w E 52 to probability distributions on Z; we will some- 
times use the notation Q(w) for the probability distribution A H Q(A I w) on 
Z and write Q(w)(dc) for Q(dc I w). If E 2 R is an event in R, the restriction 
QIE is defined to be the same Markov kernel Q(A I w) but with w ranging over 
E. 

Lemma A.1. If Q : R v Z is a Markov kernel and a function f on  R x Z 
i s  measurable, the function w E R H S f  (w, <)Q(dc I w) is also measurable. 

Proof. The statement of the lemma follows from the standard monotone-class 
argument (see, e.g., Williams 1991, 53.14) and the fact that it holds for the 
indicator functions f = IAxB of the rectangles A x B, where A C 0 and 
B C Z are measurable. 0 
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Regular conditional distributions 

Let ( 0 ,  3, P) be a probability space. If we fix w E 0 ,  P(A I G)(w) will not 
necessarily be a probability distribution as a function of A E 3. We cannot 
even guarantee that P(A I G)(w) will be a probability distribution for almost 
all w. Consider, e.g., the property 

where A and B are disjoint events. For fixed A and B it will hold for almost 
all w, but the set of exceptional w for which it does not hold will depend on 
the pair (A, B), and the union of the exceptional sets over the potentially 
uncountable set of all pairs (A, B) may not be an exceptional set. 

Let GI and G2 be two sub-a-algebras of 3. A Markov kernel 

is called a regular conditional probability if for each A E G2, Q(A I w) as a 
function of w is a version of the conditional probability p(A I &)(w). There 
may be additional regularity properties that one might like to impose, such 
as 

P{w : QA E 81 n 8 2  : &(A I W) = IA(w)) = 1 , 
but they do not form part of the definition. 

The two most standard general results about existence of regular condi- 
tional probabilities are: 

A regular conditional probability exists if 0 is a Lusin space (i.e., a topo- 
logical space that is homeomorphic to a Borel subset of a compact metric 
space) and G1 is the Borel a-algebra. (This condition does not depend on 
G2, so one may take G2 :'= 3 . )  

0 A regular conditional probability exists if G2 is the a-algebra generated by 
a random variable. (It is clear that "random variable" can be replaced by 
"random element with values in a Borel space" .) 

Proofs can be found in, e.g., Rogers and Williams 1994 (811.89) for the first 
statement and Shiryaev 1996 (Theorem 11.7.5) for the second. 

The following lemma asserts that, as one would expect, conditional expec- 
tations can be computed by averaging over regular conditional probabilities. 
We will need it only for the case 8 2  = 3, but even the more general state- 
ment is very easy to prove (and so we will give a proof for this standard result, 
which, however, can rarely be found in modern textbooks). 

Lemma A.2. Let Q be a Markov kernel from ( 0 ,  GI) to ( 0 ,  G2), where G1 
and G2 are sub-a-algebras of 3. The Markov kernel Q is a regular conditional 
probability if and only if, for any bounded 82-measurable random variable J, 
wl E 0 JJ(w2)Q(dw2 I WI) is a version of IE(E 1 GI). 
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Proof. We are required to prove that Q is a regular conditional probability if 
and only if 

for all GI-measurable E and all bounded &-measurable J. 
If we take J = IIA for A E G2, (A.3) will become 

which means that Q(A I w )  is a version of the conditional probability of A 
given and, therefore, that Q is a regular conditional probability. 

Let us now assume that Q is a regular conditional probability; we are 
required to prove that (A.3) holds for all GI-measurable E and bounded G2- 

measurable J; fix such an E. We know that (A.3) holds for J = 1A with 
A E G2 (see (A.4)); it remains to apply the standard monotone-class argument 
(Williams 1991, 83.14; already used in the proof of Lemma A.l). 0 

If & : 0 -t El and J2 : 0 -t E2 are random elements, a regular conditional 
distribution of J2 given 51 is the Markov kernel R : ( 0 ,  GI) ct & defined by 
R(w) := Q(w)J-l, w E 0 ,  where GI is the u-algebra on 0 generated by J1 and 
Q is a regular conditional probability (A.2); a regular conditional distribution 
R exists if and only if a regular conditional probability (A.2) exists. 

A.5 Exchangeability 

Let Z be a measurable space. We say that a probability distribution P on 
the measurable space Zn of sequences of length n, where n E {1,2,. . . ), is 
exchangeable if 

for any measurable E Zn and any permutation n of the set (1,. . . , n) 
(in words: if the distribution of the sequence zl . . . zn is invariant under any 
permutation of the indices). We say that a probability distribution P on the 
power measurable space Z" is exchangeable if the marginal distribution Pn 
of P on Zn (defined by 

for all events E Zn) is exchangeable for each n = 1,2,. . . (in words: if the 
distribution of the sequence 2122..  . is invariant under any permutation of a 
finite number of the indices). The exchangeability model is defined to be the 
set of all exchangeable probability distributions on Zoo. 
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The question of relation between randomness and exchangeability models 
is a popular topic in the foundations of Bayesian statistics (see, e.g., Chap. 1 of 
Schervish 1995). Every power probability distribution Q" on Z" is exchange- 
able, and under a weak regularity condition every exchangeable probability 
distribution on Z" is a mixture of power distributions; this is de Finetti's 
representation theorem (see, e.g., Schervish 1995, Theorem 1.49). 

De Finetti's theorem. Suppose Z i s  a Bore1 space. A probability distribu- 
t ion P on  Zb" i s  exchangeable i f  and only i f  P i s  a mixture of power distribu- 
tions: 

P = Qb"p(dQ) I 
for some probability distribution p on  the space P(Z)  of all probability dis- 
tributions on  Z (equipped with the smallest a-algebra such that all evaluation 
functions Q H Q(E) are measurable, E ranging over the events i n  Z). 

Conditional probabilities given a bag 

We will need the following simple result about the existence of a regular 
conditional probability for exchangeable distributions. We define the bag CT- 
algebra on Zn as the family of events E C Zn such that 

for all permutations n of the set (1,. . . , n ) .  

Lemma A.3. Let P be an exchangeable distribution on Zn for an  n E 
{1,2,. . . ) and let B be the bag a-algebra. The Markov kernel C which maps 
each w = (21,. . . , z,) E Zn to  the probability distribution C(w) on  Zn concen- 
trated o n  the set of all permutations (z,(l), . . . , z,(,)) and assigning the same 
probability l l n !  to  each of these permutations will be a regular conditional 
probability w.r. t o  B i n  the probability space (Zn, P).  

Proof. For any random variable ( on Zn set 

the sum being over all n! permutations n of (1,. . . ,n). By Lemma A.2, we 
are required to prove that 

for any set E C Zn in the bag a-algebra. 
First we notice that, if R is a measurable space and G : R -t 0 is a 

bijection measurable in both directions, then for every measurable function 
f : R t R, measurable set E G 0 ,  and probability distribution P on 0, 
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where the set E', function f', and probability distribution P' are defined by 

Applying this to 0 := Zn, G(zl, . . . , z,) := (z,(l), . . . , z,(,)), where .rr is a 
permutation, and f := J, we obtain 

(remember that E' = E and P' = P). Finally, averaging over all .rr gives 
(A.5). 

A.6 Theory of martingales 

Let ( 0 , 3 ,  P) be a probability space. It will be convenient to use the adjectives 
"increasing1' and "decreasing" in the extended sense (as we do throughout 
the book: see p. 3); in particular, a sequence of a-algebras Fn is increasing 
if 31 C 3 2  G . . -  and a sequence of random variables Jn is increasing if 
J1 L 52 L . - -  (J L rl can be defined as "J(w) 5 ~ ( w )  for all w" or as 
'Y L 7 almost surely"; it does not matter which definition is used for the 
mathematical results stated in this appendix). 

A filtration is an increasing sequence of sub-a-algebras 3 0  C 31  C F2 C_ 
- .  . CI 3; when we say that 3 1  G 3 2  C_ . . - C 3 is a filtration, we always 
mean that it is complemented by 30 := {0,0}. Let Fm be the smallest a- 
algebra containing all Fn. We say that a sequence of random elements &, 
where n = 1,2,. . . or n = 0,1,2,. . . , is adapted if each In is Fn-measurable. 
A sequence of random elements &, (2,. . . is predictable if each Jn is 3n-1- 
measurable. 

We say that an adapted sequence of random variables Jo, & , . . . is a mar- 
tingale if E(Jn I Fn-l) = 5,-1 for all n = l, 2, . . . , and we say that an 
adapted sequence of random variables (1, J2,. . . is a martingale difference 
if E(Jn 1 Fn-l) = 0 for all n = 1,2,. . . . A very useful generalization of the 
notion of a martingale is that of a supermartingale: this is an adapted se- 
quence of random variables 6, & , . . . such that IE(& I Fn-1) 5 Jn-1 for a11 
n =  l ,2,  .... 

If there is no a priori fixed filtration on the given probability space, we 
say that an adapted sequence of random variables to, J1,. . . is a martingale 
(resp. supermartingale) if it is a martingale (resp. supermartingale) w.r. to 
the filtration Fn,  n = 0,1, . . . , such that each Fn is generated by the random 
variables J1, . . . , Jn (in particular, 30 := {0,0}). This rather old-fashioned 
notion of a martingale is used in Chap. 7. 
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Analogous definitions can be given for a finite filtration, 31,. . . , 3 ~ ;  in 
this case, martingales and supermartingales are finite sequences to, &, . . . , EN, 
and predictable sequences and martingale differences are finite sequences 
J I , . . . , ~ .  

The following is a simple version of Doob's inequality; it holds for both 
finite and infinite filtrations. 

Doob's inequality. I f  (&) i s  a nonnegative supermartingale w.r. to a filtra- 
tion (3,) with Fo = (0, a) and C is a positive constant, then 

The next result says that the probability of an event is the infimum of the 
initial values of nonnegative martingales (or of nonnegative supermartingales) 
that exceed or equal one whenever the event happens; for a proof, see Shafer 
and Vovk 2001 (58.5). 

Ville's theorem. If 31, F2,. . . is a filtration, 30 := {0,0), and E € Fm, 
then 

where (&) ranges over the nonnegative martingales (or supermartingales) w.r. 
to the filtration (3,). 

In stating the following simple but useful result we will use the logical notation 
A ++ B for the symmetric difference of events A and B. 

Borel-Cantelli-L6vy lemma. If Fo, Fl, . . . is a filtration and A, E 3, for 
n = l , 2 , .  . ., then 

almost surely. 

The Borel-Cantelli-LBvy lemma generalizes the part of the classical Borel- 
Cantelli lemma that deals with sequences of independent events A, (the in- 
dependence of the events A, means that the a-algebras in the sequence 

3, := (0, A,, \ A,, 

are independent). 

Borel-Cantelli lemma. Let A1, A2,. . . be a sequence of events. 



286 A Probability theory 

If the events A1, A2, . . . are independent, and En p(An) = ca, 

Limit theorems 

In this subsection we will state some fundamental limit theorems of the theory 
of martingales (for proofs, see Shiryaev 1996 and Shafer and Vovk 2001). 

Martingale strong law of large numbers. Let (Jn) be a martingale dif- 
ference w.r. to a filtration 30, 31, . . . and let (An) be an increasing predictable 
sequence w.r. to the same filtration with A1 > 0 and A, = ca aa.. If 

then 
1 -x& + O  ( n i m )  a.s. 

An . 2=1 

These are important special cases. 

Kolmogorov's strong law of large numbers. Suppose 51, &, . . . is a se- 
quence of independent zero-mean random variables and A1, A2,. . . is an in- 
creasing sequence of positive numbers such that An --, ca ( n  + ca). If 

then 

Borel's strong law of large numbers. I f  51, 52, .  . . i s  a sequence of inde- 
pendent binary (i.e., taking values in { O , l ) )  random variables with E(Jn) = p, 
n =  l ,2,  ..., then 

The following result is a martingale version (due to Stout 1970) of Kol- 
mogorov's law of the iterated logarithm (it uses the usual logical convention 
that the event A + B is the union of B and the complement of A). 
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Martingale law of the iterated logarithm. Let (J,) be a martingale dif- 
ference w.r. to a filtration &,Fl, . . . and let (A,), (c,) be increasing positive 
predictable sequences w.r. to this filtration. If IJ,I 5 c, for all n, then, almost 
surely, 

A.7 Hoeffding's inequality and McDiarmid's theorem 

Hoeffding's inequality. Let Fo, . . . , F n  be a filtration. For any deterrninis- 
tic sequence cl, . . . , cn of positive numbers, any predictable sequence vl, . . . , v, 
w.r. to (Fi), any martingale diflerence &, . . . , &  w.r. to (Fi) such that 
Iti -vil < Q, i = 1 ,..., n, and any 6 > 0, 

and 

The proof of this result will easily follow from the following elementary but 
basic fact. 

Lemma A.4. Let < be a random variable such that E J  = 0 and a < 5 b for 
constants a and b and let s > 0. Then 

Proof. Assume, without loss of generality, that s = 1 (the general case follows 
from this special case by replacing E, a, b with s t ,  sa, sb, respectively). Since 
the function x H ex is convex, we can assume, without loss of generality, that 
the distribution of J is concentrated on {a, b). Since EE = 0, the mass at a is 
b/(b - a) and the mass at  b is -a/(b - a) (remember that a < 0 and b 2 0; 
we only consider the nontrivial case a # b); therefore, we are only required to 
prove that 

b a 
-ea- - eb < e(b-a)2/8 . 
b - a  b - a  - 

(The formal version of this argument is that, by the convexity of the expo- 
nential function. 

x - a  b -x  
ex I. - e b +  - ea 

b - a  b -a  

for x E [a, b]; it remains to find the expectations of the two sides.) 
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Introducing the notation 

u := b - a, 

we can rewrite (A.ll) as 

a p := -- 
b 1 - p : =  - 

b - a '  b - a '  

or, equivalently, 

It remains to notice that $(O) = 0, #(0) = 0 and $"(u) 5 114; the last 
inequality follows from the fact that the geometric mean never exceeds the 
arithmetic mean: 

Lemma A.4 shows that 

where ai and bi are predictable sequences and ti E [ai, bi] is a martingale 
difference, is a supermartingale; this fact is used directly in Chaps. 6 and 7. In 
conjunction with Doob's inequality it implies Hoeffding's inequality (s should 
be chosen optimally for the given E and cl, . . . , c,). 

McDiarmid's theorem. Let n E N, &, . . . , &, be a sequence of independent 
random elements taking values in a measurable space A, and a measurable 
function f : An + R satisfy 

for some deterministic sequence cl, cz, . . . . For any E > 0, 

and 
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Proof. Let 3i be the a-algebra generated by &, . . . ,ti, i = 0,1, .  . . , n (and so 
30 = {0,0)). Assume, without loss of generality, that  IE f (&, . . . , Cn) = 0. In 
this proof we will use the notation 

ess i d ( <  1 3 )  := sup {c E R : P({< 2 c) 1 3 )  = I ) ,  

ess sup(< I 3 )  := inf {c E R : P({< 5 c) I 3 )  = 1) . 

Set 

1 
vi := - (ess inf(Aqi 1 3-,-1) + ess s u p ( A ~  I 3i-I)) ,  i = 1,. . . , n . 

2 

Noticing that  

I&i - 5 Cj/2, i = 1,. . . , n , 
i t  remains t o  apply Hoeffding's inequality to  the  deterministic sequence 4 2 ,  
the predictable sequence vi, and the martingale difference A% 0 

A.8 Bibliographical remarks 

Kolmogorov's axioms are proposed in Kolmogorov 1933a. 

Conditional probabilities 

The classical definition of the conditional probability of an event A given another 
event B is p(A I B) := p(An B)/ p(B), but it only works if p(B) > 0. One of the main 
contributions of Kolmogorov's Gmndbegriffe (1933a) was to extend this definition 
to the case where B(B) = 0 is allowed; the price was that the definition had to be 
given for all B in a partition of R simultaneously, and the definition made sense not 
always but only almost surely. From the modern point of view, presented in sA.3, 
Kolmogorov defined p(A I 9 )  only for G obtained from the original a-algebra F and 
a partition: an event A E 3 is included in G if and only if it is the union of some 
elements of the partition; his definition, however, extends trivially to the standard 
definition (given above) applicable to an arbitrary a-algebra 9 E 3. (For a detailed 
discussion, see Shafer and Vovk 2003.) 

One of the difficulties of Kolmogorov's definition is demonstrated by DieudonnB's 
(1948) famous example, in which the conditional probabilities p(Ap)(w) do not have 
versions that would form a probability distribution as a function of A for almost all 
w.  This prompted the development of the theory of regular conditional probabilities, 
in which conditional probabilities p(A I B) are defined simultaneously for all events 
A E 9 2  and B E 91 ranging over sub-a-algebras 9 2  and 91 of 3. 
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Martingales 

A mathematical notion of a martingale was introduced explicitly and used for the 
purposes of the foundations of probability by Ville (1939); earlier, it had been used 
by several people, including LBvy and Kolmogorov, without an explicit definition. 
The simple version of Doob's inequality given in this appendix was proved already 
by Ville (1939); a more sophisticated version appeared in Doob 1953. A special 
case of Ville's theorem was proved by Ville (1939). For further historical details and 
references, see Shafer and Vovk 2001. 

Hoeffding's inequality and McDiarmid's theorem 

Hoeffding's inequality was first published in Hoeffding 1963; its martingale version 
is sometimes referred to as the Hoeffding-Azuma inequality (after Azuma's paper 
1967)' although already Hoeffding 1963 (p. 18) contains the martingale extension. 
Our exposition follows Devroye et al. 1996. In many textbooks Hoeffding's inequality 
is given in the simplified and easier to  prove form with vi = 0, but this simplified form 
does not allow obtaining the best constants in McDiarmid's theorem (McDiarmid 
1989). 



Appendix B: Data sets 

In this appendix we will describe the two main data sets used in the book. A 
separate section, 5B.3, is devoted to the important problem of "normalization" 
of the objects; some other technical issues are discussed in 5B.4. 

B.l USPS data set 

The USPS (US Postal Service) data set is a standard benchmark for testing 
classification algorithms. It consists of 7291 training examples and 2007 test 
examples collected from real-life US zip codes (mail passing through the Buf- 
falo, NY, post office). In our experiments, we always merge the training set 
and the test set, in this order, obtaining what we call the full USPS data set 
(or just USPS data set). After that we often apply a random permutation. 

Each example consists of an image (16 x 16 matrix with entries in the 
interval (-1,l) that describe the brightness of individual pixels) and its label 
(0 to 9). 

It is well known that the USPS data set is heterogeneous; in particular, 
the training and test sets seem to have different distributions. For example, 
the 1-nearest neighbor algorithm makes 5.7% on the USPS test set but only 
2.3% on a test set of the same size randomly chosen from the full data set. 
(See, e.g., Freund and Schapire 1996.) 

The USPS data set has been used in hundreds of papers and books; see, 
e.g., LeCun et al. 1990 and Vapnik 1998. Among the results reported in the 
literature for the error rate on the test set are: 2.5% for humans, 5.1% for 
the five-layer neural network LeNet 1, 4.0% for a polynomial support vector 
machine (with the polynomial kernel of degree 3). A very good result of 2.7% 
was obtained by Simard et al. 1993 without using any learning methods. Since 
we are usually interested in results for a randomly permuted USPS data set, 
the error rates that we obtain are not comparable to the error rates on the 
test set alone. 
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B.2 Boston Housing data set 

The Boston Housing data set is a popular data set for testing different re- 
gression methods; it is available from several data repositories, such as Delve, 
the UCI data repository, and StatLib. The data set consists of 506 examples 
representing different areas of Boston, MA; each example has 12 continuous 
attributes, one binary attribute, and the label, which is the median house 
price in the area. This is the full list of all variables (13 attributes and the 
label): 

0 per capita crime rate; 
0 proportion of residential land zoned for lots over 25,000 square feet; 
0 proportion of non-retail business acres; 
0 binary variable indicating if the location is contiguous to the Charles River; 

nitric oxides concentration; 
0 average number of rooms per dwelling; 
0 proportion of owner-occupied units built prior to 1940; 
0 weighted distances to five Boston employment centers; 

index of accessibility to radial highways; 
full-value property-tax rate per $10,000; 

0 pupil-teacher ratio; 
0 black population proportion; 

lower status population proportion; 
0 the label is the median value of owner-occupied homes. 

All labels lie between $5000 and $50,000 and are given in units of $1000. 
Similarly to the USPS data set, in our experiments we randomly permute the 
Boston Housing data set. 

The following results for the mean squared difference between predicted 
and actual labels for the examples in a randomly chosen test set are reported 
in the literature: 12.4 and 11.7 for bagging, 10.7 for boosting, 7.7 and 7.2 for 
support vector machine. 

B .3 Normalization 

The performance of many machine-learning algorithms improves greatly if the 
objects are pre-processed. Suppose we are given examples 

a new object x,, and our goal is to predict the label y,; each object xi is a 
vector in IRK and its components are denoted x ~ J , .  . . ,  xi,^. (In the case of 
the USPS data set, K = 256, and in the case of the Boston Housing data set, 
K = 13.) 

The attributes of the Boston Housing data set have different orders of 
magnitude simply because of their nature: e.g., one attribute is binary and 
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another attribute is a distance; moreover, it is clear that the order of mag- 
nitude of different attributes often depends on the arbitrarily chosen unit of 
measurement. Therefore, it often leads to better results if we somehow nor- 
malize the columns of the matrix xi,k. In our experiments with the Boston 
Housing data set we apply the linear transformation 

such that, for all k = 1,. . . , K ,  

unless mini xi,k = maxi xi,k, in which case we set := 0 for all i. As our 
experiments are on-line, we recompute ak and br, as each new object x, arrives. 

The kind of normalization required for the USPS data set is different: the 
attributes, being the intensities of individual pixels, are directly comparable, 
but the brightness and contrast of different hand-written images seems to 
be irrelevant to their classification. Therefore, it appears useful to normalize 
the rows of the matrix  xi,^. In many of our experiments we apply the linear 
transformation 

xi,k I+ := ai + bixi,k , 
where ai and bi are chosen such that, for all i = 1,. . . , n, 

in practice, we never have the problem that mink Xi,k = maxk xi$ (there are 
no absolutely uniform images). Since the pre-processing of each example is 
done independently of the other examples, even in on-line experiments we can 
do all pre-processing in advance. 

No pre-processing is done in Chap. 7 on testing: all experiments are run on 
the original USPS data set; in the experiments reported in the other chapters 
this data set is randomly permuted and all the objects are normalized. 

B.4 Randomization and reshuffling 

Most of our experimental results involve randomization: our algorithms may 
be randomized (e.g., smooth conformal predictors are), or we might "reshuf- 
fle" a data set to make sure it conforms to an interesting assumption, such 
as exchangeability (when "reshuffling" is done, this is always mentioned ex- 
plicitly). The main features of the graphs in this book are not significantly 
affected by the details of randomization. 

All reported results are obtained by setting the initial state of MATLAB's 
generator of pseudorandom numbers to 0, unless stated otherwise; since the 
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main purpose of computational experiments in this book is to illustrate the- 
oretical results, we rarely use other initial states. 

The most basic case of reshuffling is a random permutation of the data set 
performed to make sure that the assumption of exchangeability is satisfied. 
We do it for both USPS and Boston Housing data sets. 

We have been saying "reshuffle" because the examples in the original data 
set are already in a somewhat random order, but Reality's attempt at shuffling 
is often only half-hearted (see 87.1 for some results about the USPS data set), 
and we will sometimes say "shuffle", especially when we are trying to achieve 
conformity with an assumption that is stronger than exchangeability. 

After the general notion of an on-line compression model is introduced 
in $8.1, the idea of shuffling also becomes more general: given a data 
set zl, .  . . , zn, we can find its summary cn := tn(zl,. . . ,zn) and then 
draw another data sequence zi, . . . , z; from the conditional distribution 
Pn (dzl, . . . , dz, I 0,). If the model is very specific, shuffling is much more 
intrusive than a random permutation is, and might be better described as 
generation of a new data set sharing some characteristics with the original 
data set. (Shuffling for the Gauss linear model, described on p. 204, is of this 
type.) 

In 89.4 we explicitly describe an efficient procedure of shuffling for junction- 
tree models, an important class of on-line compression models. 

In all cases where shuffling is done in this book, Theorem 8.2 guaran- 
tees that at each significance level each smoothed conformal predictor makes 
errors independently at  different trials with probability equal to the chosen 
significance level. 

B .5 Bibliographical remarks 

In our description of the USPS data set we partly followed LeCun et al. 1990. The 
original paper about the Boston Housing data set is Harrison and Rubinfeld 1978. 

Most of the experimental results reproduced here are from Vapnik 1998. The av- 
erage squared error of 7.2 (originally reported in Drucker et al. 1996) was achieved 
by the SVM using a polynomial kernel, with the degree chosen based on the perfor- 
mance on a validation set; Stitson et al. (1997) obtained a slightly weaker result 8.1 
using a similar method, but this might be due to a random choice of the test set. 
The SVM using ANOVA splines achieves the average square error of 7.7 (Saunders 
et al. 1998). The average squared error of 11.7 for bagging is reported by Breiman 
(1994). 



Appendix C: FAQ 

In this short appendix we give our answers to several questions we have been 
asked by our colleagues and students. For simplicity we will discuss only pre- 
diction under unconstrained randomness, unless a different model is explicitly 
mentioned. 

C.l  Unusual features of conformal prediction 

Isn't your Proposition 2.4 (p. 27) too strong t o  be true? It  i s  generally believed 
that to  make categorical assertions about error probabilities some Bayes-type 
assumptions are needed and that the assumption of unconstrained random- 
ness i s  not suficient. For example, in the theory of PAC learning an  error 
probability E i s  only asserted with some probability 1 - 6.  

It should be remembered that Proposition 2.4 does not assert that the prob- 
ability of error, err, = 1, is E conditionally on knowing the whole past (2.4) 
(p. 19); it is only asserted that it is E unconditionally and conditionally on 
knowing errl, . . . , err,-1. (Actually, it is quite obvious that the probability of 
error is often not equal to E if the whole past is known: if the prediction set 
is empty, the conditional probability of error is 1; to balance this, the condi- 
tional probability that a non-empty prediction set is wrong will tend to be 
less than E . )  

How is  i t  possible to  achieve probability of error exactly E in the problem of 
classification? For example, in the binary case there are only two possible 
labels, and you cannot expect that one of these labels will have probability 
exactly E .  

It is impossible to achieve the conditional probability of error equal to E given 
the observed examples, but it is the unconditional probability of error that 
equals E .  Therefore, it implicitly involves averaging over different data se- 
quences, and this gives us the leeway needed to obtain a probability precisely 
equal to E. 
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Suppose the prediction set is empty at the chosen significance level. Does i t  
mean that the result of conformal prediction is useless in this case? 

Even if you are interested in only one significance level, say E, the empty 
prediction still carries some information: you know that the object whose 
label you are predicting is unusual (in the long run the frequency of seeing 
such unusual objects is at most E). Are you sure there was no mistake in 
recording the object? Do you still believe in the exchangeability assumption? 
If the answer to these questions is "yes" and you would still like to have a 
nonempty prediction, you have no choice but to look at what happens at  the 
other significance levels. (As clear from Chap. 1, we share the standard view 
that it is never wise to concentrate on just one significance level.) Look at 
the smallest significance level E" a t  which the prediction set is empty and at 
the smallest significance level E' at which the prediction set is not multiple. 
(Cf. the definition of confidence and credibility on p. 96.) If E' is small and 
the difference between E' and E" is significant, you can be fairly sure that the 
singular prediction set at  the significance level (E' + eN)/2 will be correct. 

C.2 Conformal prediction vs. standard methods 

I n  your approach to classification, you have two main performance measures, 
Err, (the number of errors) and Mult, (the number of multiple predictions). 
You prove that Err, grows as nE (where E is your chosen significance level) 
plus random noise and observe that in experiments Mult, is usually small. I n  
the standard approach (e.g., in the PAC theory) one trivially has Mult, = 0 
and observes that in experiments Err, i s  usually small. There is  a complete 
symmetry and you cannot claim that your approach is better. 

This symmetry is superficial. Imagine that we are given a new object x, 
having observed examples (xi, yi), i = 1, . . . , n - 1. Suppose that for a small 
significance level 6 a conformal predictor outputs a one-element prediction 
set { y }  and the standard approach outputs the simple prediction y. We can 
see that the prediction set { y }  is singular and we know that it has a small 
(equal to E) probability of error. This gives us much more information than the 
simple prediction y does: in the latter case, we can see that y is singular but 
we knew in advance it was going to be singular; no reliable inference about the 
probability of error can be drawn from the smallness of the number of errors 
so far. (To use the language of the theory of martingales, the main asymmetry 
between Err, and Mult, is that Mult, is predictable whereas Err, is not.) 

Could you summarize the main diflerences between conformal prediction and 
the standard approach to prediction? 

Conformal predictors implement transductive rather than inductive learning. 
The basic validity result about conformal predictors is proved in the on-line 
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Table C.1. Three dichotomies for hedged prediction 

inductive transductive 
off-line on-line 

statistical modeling on-line compression modeling 

rather than off-line learning protocol. To state our results in the simplest and 
most general form we use on-line compression rather than traditional statisti- 
cal modeling. Table C.l shows these three differences; conformal prediction is 
mostly concerned with the right-hand column and traditional machine learn- 
ing is mostly concerned with the left-hand column. 

Suppose I have a plausible on-line compression model M but know little about 
the set P of probability distributions on  Zm that agree with M; i n  particular, 
P may turn out to be empty or a singleton. Should I be worried about this? 

In our opinion, in practical applications you can safely ignore the foundational 
questions such as whether P is rich enough. You know that for each finite 
horizon N there are plenty of probability distributions on ZN that agree with 
M,  and you are never going to reach infinity. 

I n  Chaps. ,Z'-4 you show how one can use standard machine-learning methods 
to devise nonconformity measures. Are there any formal connections between 
those standard methods and conformal predictors based o n  those methods? 

We are not aware of any formal connections that always hold; it is often true, 
however, that the simple prediction produced by a machine-learning method 
will belong to the prediction set produced by the corresponding conformal 
predictor, unless that prediction set is empty. 
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Sets, bags, and sequences 

the empty set 

the positive integer numbers, {1,2,. . . ) 
the nonnegative integer numbers, {0,1, . . . ) 
the integer numbers 

the rational numbers 

the real numbers 

the extended real numbers, R U ( -00,  oo) 

set (each element enters only once) 

bag (can contain more than one copy of the same element; p. 23) 

sequence (the parentheses and commas may be omitted) 

the empty sequence 

the set of all infinite continuations of a finite sequence a1 , . . . , a, 

the size of a set or bag A 

the set of all sequences of elements of Z of length n 

the set of all bags of elements of Z of size n 

the set of all finite sequences of elements of Z 

the set of all bags (always finite) of elements of Z 

the set of all infinite sequences of elements of Z 

the set of all subsets of a set Z 

the set of all functions of the type X 4 Y 

the element containing z E Z of a partition A of a set Z 
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Stochastics 

probability 

expectation 

the set of all probability distributions on Z (measurable space) 

the Bernoulli distribution on {0,1) with the parameter 6: 
Bs{l) = 6 and Ba{O) = 1 - 6 

the normal distribution on R with mean p and variance u2 

the uniform distribution on [O,1]  

the percentage point of the t-distribution: p{J 2 tat,) = 6, 
where J has Student's t-distribution with n degrees of freedom 

the percentage point of the standard normal distribution: p{c 2 
ZJ) = 6, where J has the normal distribution  no,^ 
the marginal distribution of Q E P ( X  x Y)  on X (p. 65) 

the regular conditional distribution of y E Y given s E X, 
where (x, y) is distributed as Q (p. 65) 

Markov kernel from 0 to Z (p. 280) 

the image of P under a mapping f (p. 276) 

variation distance between probability distributions (p. 163) 

the game space (p. 148) 

Machine learning 

X object space (p. 17) 

Y label space, IYl > 1 (p. 17) 

Z the example space (Z = X x Y,  p. 18) 

x the extended object space X x [0, 11 (p. 61) 

Z the extended example space X x [O,1]  x Y (p. 61) 

H feature space (with the feature mapping F : X -+ H; p. 36) 

Confidence prediction 

E significance level 

r: the prediction set at trial n (p. 20) 

err; the indicator of error at  trial n (p. 20) 
- err the predictable version of err (p. 77) 

Err; the cumulative number of errors up to trial n (p. 20) 
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the predictable version of Err (p. 78) 

the indicator of multiple prediction at trial n (p. 54) 

the predictable version of mult (p. 78) 

the cumulative number of multiple predictions up to trial n 
(P. 54) 
the predictable version of Mult (p. 78) 

the indicator of empty prediction at trial n (p. 54) 

the predictable version of emp (p. 80) 

the cumulative number of empty predictions up to trial n (p. 54) 

the predictable version of Emp (p. 80) 

the nth random number used by a randomized confidence pre- 
dictor (p. 22) 

the two components of T,, as defined in $3.3 (p. 61) 

the number of data sequences generating a summary u (pp. 209, 
226) 

the predictability of object x E X (p. 65) 

the predictability distribution function (p. 65) 

the multiplicity curve (p. 66) 

the emptiness curve (p. 66) 

the critical significance level (p. 68) 

Other notation 

I I A  the indicator function of a set or property A (p. 59) 

f IA the restriction of a function or kernel f to a subset A of its 
domain 

diam A the diameter (largest distance between points) of A 

co A the convex hull of a set A in a linear space 

171 the identity n x n matrix (n is omitted if clear from the context) 

X ' matrix X transposed 

X-I the inverse of matrix X 

rank X the rank of matrix X 

u V v the maximum of u and v, also denoted max(u, v) 

u A v the minimum of u and v, also denoted min(u, v) 

U+ u v 0 

u- (-u) v 0 
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F(t-1 the limit of F(u) as u approaches t from below 

F(t+) the limit of F(u) as u approaches t from above 

Van from some n on 

f n  = O(gn) limsu~n+,(fn/gn) < 00 (used for fn, gn > 0) 

f n  = Q(gn) fn = O(gn) and gn = O(fn) 

Abbreviations 

FCVP 

ICP 

LSCM 

MCP 

MCT 

NNR 

OCM 

RRCM 

SVM 

USPS 

fully conditional Venn predictor 

inductive conformal predictor 

least squares confidence machine 

Mondrian conformal predictor 

Mondrian conformal transducer 

nearest neighbors regression 

on-line compression model 

ridge regression confidence machine 

support vector machine 

see 5B.l (p. 291) 
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